首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有二阶连续导数,且f(0)=0,f’(0)=-1,已知曲线积分∫L[xe2x-6f(x)]sinydx-[5f(x)-f’(x)]cosydy与路径无关,则f(x)=_____.
设函数f(x)具有二阶连续导数,且f(0)=0,f’(0)=-1,已知曲线积分∫L[xe2x-6f(x)]sinydx-[5f(x)-f’(x)]cosydy与路径无关,则f(x)=_____.
admin
2017-10-25
48
问题
设函数f(x)具有二阶连续导数,且f(0)=0,f’(0)=-1,已知曲线积分∫
L
[xe
2x
-6f(x)]sinydx-[5f(x)-f’(x)]cosydy与路径无关,则f(x)=_____.
选项
答案
[*]x(x+2)e
2x
解析
曲线积分与路径无关
,故有
{[f’(x)-5f(x)]cosy}=
{xe
2x
-6f(x)]siny},
即[f’’(x)-5f’(x)]cosy=[xe
2x
-6f(x)]cosy,
消去cosy,整理得f’’-5f’+6f=xe
2x
,
对应齐次方程的特征方程为r
2
-5r+6=(r-2)(r-3)=0,
对应齐次方程的通解为Y=C
1
e
2x
+C
2
e
3x
,
由于λ=2是特征根,故设f=x(Ax+B)e
2x
,代入方程可求出A=
,B=-1,于是方程的通解为
f(x)=C
1
e
2x
+C
2
e
3x
-
x(x+2)e
2x
,
再由f(0)=0及f’(0)=-1,可求出C
1
=C
2
=0,
因而所求函数为f(x)=
x(x+2)e
2x
.
故应填
x(x+2)e
2x
.
转载请注明原文地址:https://kaotiyun.com/show/mjr4777K
0
考研数学一
相关试题推荐
设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X表示3个球中的新球个数,求X的分布律与分布函数.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为.设X表示途中遇到红灯的次数,则E(X)=________.
设随机变量X~U[0,2],Y=X2,则X,Y().
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
求函数f(x,y)=x2一xy+y2在点M(1,1)沿与x轴的正向组成a角的方向1上的方向导数,在怎样的方向上此导数有:(1)最大的值;(2)最小的值;(3)等于0.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)