设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则

admin2019-01-25  28

问题 设函数f(x)连续,除个别点外二阶可导,其导函数y=f’(x)的图像如右图(1),令函数y=f(x)的驻点的个数为p,极值点的个数为q,曲线y=f(x)拐点的个数为r,则

选项 A、p=q=r=3.
B、p=3,q=r=2.
C、p=3,q=2,r=3.
D、p=3,q=2,r=1.

答案C

解析 设a,b,c,d,e各点如图,

根据驻点,极值点,拐点的概念及判别法知:驻点是:x=a,c,e.因为x=a,c,e时,f’(x)=0.p=3.驻点中只有x=a,c是极值点,因为x=a,c两侧导数变号.x=e两侧导数均负,f(x)是单调下降的,x=e不是极值点.x=b是f(x)的连续而不可导点,x=b两侧的导数均正,x=b也不是f(x)的极值点.q=2.
(x0,f(x0))为拐点的必要条件是:f’’(x0)=0或f’’(x0)不,即f’’(x0)时x=x0是f’(x)的驻点.x=d,e是f’(x)的驻点且这些点的两侧f’(x)的单调性相反即y=f(x)的图形的凹凸性相反,(d,f(d)),(e,f(e))是拐点.f’’(b)不,但x=b是f(x)的连续点,x=b两侧f’(x)的单调性相反,因而(b,f(b))也是拐点.r=3.
综上分析,应选C.[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/mlM4777K
0

最新回复(0)