首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2017-08-31
54
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解,令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
,线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n一r(AB)≥n一r+1,r(AB)≤r一1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/LLr4777K
0
考研数学一
相关试题推荐
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
(2009年试题,18)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
设且B=P-1AP.当时,求矩阵B;
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
设,试证明:an+1<an且
随机试题
网络化管理就是企业为了实现其目标,通过互联网开展企业_______和_______活动。
食管癌病人的护理诊断/护理问题。
女性,38岁,素有胃溃疡病史10多年,1个月来发作,且上腹部胀痛加重,2天来反复呕吐隔餐或隔日食物。查体:消瘦,有胃型、胃蠕动波及逆蠕动波。临床诊断为幽门梗阻。下列对确诊有意义的体征是( )
下列各项,能够引起所有者权益总额变化的有()。
某产品的寿命(单位:小时)服从参数λ=0.005的指数分布,则下列说法正确的有()。[2007年真题]
(单选题)习近平总书记强调,各级党委政府和领导干部要坚持把信访工作作为()的一项重要工作,千方百计为群众排忧解难。
巴塞尔核心原则规定了有效监管体系应遵循的25条原则,其中,银行监管当局必须制定审慎限额,限制银行对单一交易对手或关联交易对手集团的风险暴露,该原则是()。
下列路由选择协议中属于距离一向量协议的是()。
设fp为指向某二进制文件的指针,且已读到此文件尾,则函数feof(fp)的返回值为()。
Middleagehasitscompensations.Youthisboundhandandfootwiththeshacklesofpublicopinion.Middleageenjoysfreedom.
最新回复
(
0
)