首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32 +2(1 +a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
已知二次型 f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32 +2(1 +a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化为标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
admin
2017-01-21
41
问题
已知二次型 f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1 +a)x
1
x
2
的秩为2。
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化为标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
(Ⅰ)二次型矩阵 [*] 二次型的秩为2,则二次型矩阵A的秩也为2,从而 [*] 因此a=0。 (Ⅱ)由(Ⅰ)中结论a=0,则 [*] 由特征多项式 |λE—A|=[*]=(λ—2)[(λ—1)
2
—1] =λ(λ—2)
2
得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2,由(2E—A)x=0得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0,由(0E—A)x=0得特征向量α
3
=(1,—1,0)
T
。 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,—1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*] 则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为 标准形f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Λy=2y
1
2
+ 2y
2
2
。 (Ⅲ)由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)2+2x
3
2
=0,得 [*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为k(1,—1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/mmH4777K
0
考研数学三
相关试题推荐
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ﹢(a)>0,证明:存在ε∈(a,b),使得f〞(a)<0.
设A,B为同阶可逆矩阵,则().
设X,Y是两个随机变量,且P{x≤1,Y≤1}=4/9,P{x≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续(Ⅲ)f(x,y)在点(xo,yo)处可微(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在
设A,B为满足AB=0的任意两个非零矩阵,则必有
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,YnXi2依概率收敛于=__________。
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
计算下列极限:
随机试题
A.银翘散合麻杏石甘汤加减B.五虎场合葶苈大枣泻肺汤C.沙参麦冬汤D.人参五味子汤加减E.参附龙牡救逆汤肺炎风热闭肺证的治疗方剂为()
肝素的抗凝血作用机制是()。
会计凭证按其填制的程序和用途不同,可以分为()。
影响销售渠道选择的因素有()。
调解委员会调解与人民法院处理劳动争议的调解,其主要区别是()
教育的目的是社会需求的集中反映,它集中体现________。
1,3,6,(),15。
根据《中华人民共和国刑法修正案(九)》,下列说法正确的是()。
中世纪大学分为“先生大学”和“学生大学”,属于“学生大学”的是()
Whydoesthewomanneedthejob?
最新回复
(
0
)