首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
admin
2020-03-01
78
问题
齐次线性方程组的系数矩阵A
4×5
=[β
1
,β
2
,β
3
,β
4
,β
5
]经过初等行变换化成阶梯形矩阵为
则 ( )
选项
A、β
1
不能由β
3
,β
4
,β
5
线性表出
B、β
2
不能由β
1
,β
3
,β
5
线性表出
C、β
3
不能由β
1
,β
2
,β
3
线性表出
D、β
4
不能由β
1
,β
2
,β
3
线性表出
答案
D
解析
β
i
能否由其他向量线性表出,只须将β
i
视为非齐次方程的右端自由项(无论它原在什么位置)有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β
4
不能由β
1
,β
2
,β
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/mtA4777K
0
考研数学二
相关试题推荐
试讨论函数g(x)=在点x=0处的连续性.
已知f(x)=,求f(x).
设函数f(x,y)具有一阶连续偏导数,且df(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______。
设函数u(x,y)=φ(x+y)+φ(x一y)+∫x-yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
微分方程xdy+2ydx=0满足初始条件y|x=2=1的特解为()
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
设当χ→0时,(χ-sinχ)ln(1+χ)是比-1高阶的无穷小,而-1是比(1-cos2t)dt高阶的无穷小,则n为().
累次积分等于().
求极限
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
随机试题
游客从昆明出发,先到楚雄、大理,然后到丽江、临沧、怒江、保山、德宏等地,沿途最先品尝到的是()。
患者哮喘急性发作早期可出现呼吸性碱中毒是由于
外资旅行社的法律特征不包括()。
血液流经肾脏后,所含成分的最明显变化是()。
各区、县人民政府,市政府各委、办、局,各市属机构:2012年6月,国务院印发了《关于加强食品安全工作的决定》(国发[2012]20号,以下简称《决定》),明确了加强食品安全工作的指导思想、总体要求、工作目标和具体措施。为进一步加强本市食品安全工作
某委员会有成员465人,对2个提案进行表决,要求必须对2个提案分别提出赞成或反对意见。其中赞成第一个提案的有364人,赞成第二个提案的有392人,两个提案都反对的有17人。问赞成第一个提案且反对第二个提案的有几人?()
Humanvision,likethatofotherprimates,hasevolvedinanarborealenvironment.Inthedense,complexworldofatropicalfor
Ininterviews,famouspeopleoftensaythatthekeytobecomingbothhappyandsuccessfulisto"dowhatyoulove."Butmasterin
Themostobviouspurposeofadvertisingistoinformtheconsumerofavailableproductsorservices.Thesecond【C1】______isto
ThetransformationofjournalisminIndia—theworld’slargestdemocracyandoneofitsfastestgrowingeconomies—hasimplicati
最新回复
(
0
)