首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
admin
2019-05-11
124
问题
设线性方程组为
(1)讨论a
1
,a
2
,a
3
,a
4
取值对解的情况的影响.
(2)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),并且(-1,1,1)
T
和(1,1,-1)
T
都是解,求此方程组的通解.
选项
答案
(1)增广矩阵的行列式是一个范德蒙行列式,其值等于 [*]=(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
). 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵的行列式不为0,秩为4,而系数矩阵的秩为3.因此,方程组无解. 如果a
1
,a
2
,a
3
,a
4
不是两两不同,则相同参数对应一样的方程.于是只要看有几个不同,就只留下几个方程. ①如果有3个不同,不妨设a
1
,a
2
,a
3
两两不同,a
4
等于其中之一,则可去掉第4个方程,得原方程组的同解方程组 [*] 它的系数矩阵是范德蒙行列式,值等于(a
2
-a
1
)(a
3
-a
1
)(a
3
-a
2
)≠0,因此方程组唯一解. ②如果不同的少于有3个,则只用留下2个或1个方程,此时方程组无穷多解. (2)此时第3,4两个方程分别就是第1,2方程,可抛弃,得 [*] (-1,1,1)
T
和(1,1,-1)
T
都是解,它们的差(-2,0,2)
T
是导出组的一个非零解.本题未知数个数为3,而系数矩阵[*]的秩为2(注意k≠0).于是(-2,0,2)
T
构成导出组的基础解系,通解为: (-1,1,1)
T
+c(-2,0,2)
T
,c可取任意常数
解析
转载请注明原文地址:https://kaotiyun.com/show/nfV4777K
0
考研数学二
相关试题推荐
设函数z=f(u),方程u=φ(u)+∫yχP(t)dt确定u为χ,y的函数,其中f(u),φ(u)可微,P(t),φ′(u)连续,且φ′(u)≠1,求
设z=f(χ,y)二阶可偏导,=2,且f(χ,0)=1,f′y(χ,0)=χ,则f(χ,y)=_______.
计算χydχdy,其中D={(χ,y)|y≥0,χ2+y2≤1,χ2+y2≤2χ}.
微分方程2y〞=3y2满足初始条件y(-2)-1,y′(-2)=1的特解为_______.
函数y=χ+2cosχ在[0,]上的最大值为_______.
改变积分次序
设f(x),g(x)在区间[一a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分
求函数f(x)=(1+x在区间(0,2π)内的间断点,并判断其类型。
设f(χ)=,讨论f(χ)的单调性,凹凸性,拐点,水平渐近线.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
Anewtechnique______,theyieldsasawholeincreasedby20percent.
舌癌区域性淋巴结转移早的原因是()
根据《建设项目环境影响评价资质管理办法》,环境影响评价机构受到取消评价资质处罚的情形不包括()。
信息技术的综合应用过程中,CAD和GIS结合的优点是()
教育科学研究属于()。
关于国家,下列说法中错误的是:
根据下列材料回答问题。2009年,在江苏省委、省政府的正确领导下,全省深入贯彻科学发展观,认真落实中央决策部署和一系列政策措施,积极应对国际金融危机带来的严峻挑战和严重困难,统筹做好保增长保民生保稳定各项工作,经济企稳向好态势不断增强,结构调整和
简述客观性作为新闻职业理念的内涵。
设f(x)=x2-x-2在[-1,2]上满足罗尔定理的条件,则中值ξ=________.
Whichstatementistrueintermsoffuturetrainingprogram?
最新回复
(
0
)