首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设线性方程组为 (1)讨论a1,a2,a3,a4取值对解的情况的影响. (2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
admin
2019-05-11
83
问题
设线性方程组为
(1)讨论a
1
,a
2
,a
3
,a
4
取值对解的情况的影响.
(2)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),并且(-1,1,1)
T
和(1,1,-1)
T
都是解,求此方程组的通解.
选项
答案
(1)增广矩阵的行列式是一个范德蒙行列式,其值等于 [*]=(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
). 于是,当a
1
,a
2
,a
3
,a
4
两两不同时,增广矩阵的行列式不为0,秩为4,而系数矩阵的秩为3.因此,方程组无解. 如果a
1
,a
2
,a
3
,a
4
不是两两不同,则相同参数对应一样的方程.于是只要看有几个不同,就只留下几个方程. ①如果有3个不同,不妨设a
1
,a
2
,a
3
两两不同,a
4
等于其中之一,则可去掉第4个方程,得原方程组的同解方程组 [*] 它的系数矩阵是范德蒙行列式,值等于(a
2
-a
1
)(a
3
-a
1
)(a
3
-a
2
)≠0,因此方程组唯一解. ②如果不同的少于有3个,则只用留下2个或1个方程,此时方程组无穷多解. (2)此时第3,4两个方程分别就是第1,2方程,可抛弃,得 [*] (-1,1,1)
T
和(1,1,-1)
T
都是解,它们的差(-2,0,2)
T
是导出组的一个非零解.本题未知数个数为3,而系数矩阵[*]的秩为2(注意k≠0).于是(-2,0,2)
T
构成导出组的基础解系,通解为: (-1,1,1)
T
+c(-2,0,2)
T
,c可取任意常数
解析
转载请注明原文地址:https://kaotiyun.com/show/nfV4777K
0
考研数学二
相关试题推荐
设,则A与B().
设A为三阶矩阵,A的各行元素之和为4,则A有特征值_______,对应的特征向量为_______.
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
设u=f(χ,y,χyz),函数z=z(χ,y)由eχyz=∫χyzh(χy+z-t)dt确定,其中f连续可偏导,h连续,求.
设函数y=f(χ)二阶可导,f′(χ)≠0,且与χ=φ(y)互为反函数,求φ〞(y).
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
微分方程|x=1满足y=1的特解为__________。
设u=f(x2+y2,xz),z=z(x,y)由ex+ey=ez确定,其中f二阶连续可偏导,求
下列曲线中有渐近线的是()
随机试题
Thesmallestfunctioningunitinthecompositionofwordsis______.()
关于肝脏,下列叙述错误的是()
企业实行外向化战略的形式有()
下列人员中属于我国刑事诉讼当事人的是()
企业取得银行本票时,应()。
如图,球O的半径为2,圆O1是一小圆,O1O=,A、B是圆O1上两点,若A,B两点间的球面距离为,则∠AO1B=__________.
研究显示,相比于农村地区,城市地区居民哮喘、湿疹、过敏性鼻炎和结膜炎等疾病患病率不断攀升。有个假设是乡村生活环境中的某些因素,譬如自小接触到特定细菌能让人免受对某些过敏源的危害,或是城市地区的许多污染物诱发了这些过敏症的发展。对这段文字理解正确的一项是:
将一批电脑装车,装了28车时,还剩80%没有装,装了85车时,还剩1320台没有装。这批电脑共有多少台?()
某公司希望在网上调查群众对本公司某类产品的意见。在设计问卷调查表时,需要列出许多项,由网民填写或选择。一般来说,(67)是不应该列入的。
下列接口标准中,( )接口标准不能弥补RS-232C在传输距离和传输效率上的不足。
最新回复
(
0
)