首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…n), 证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1,k2,…,kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…n), 证明:存在ξ∈[a,b],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1,k2,…,kn)f(ξ).
admin
2022-08-19
38
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…n),
证明:存在ξ∈[a,b],使得
k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
,k
2
,…,k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M, 显然有m≤f(x
i
)≤M(i=1,2,…,n), 注意到k
i
>0(i=1,2,…,n),所以有 k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n), 同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M, 即m≤[k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)]/[k
1
+k
2
+…+k
n
]≤M, 由介值定理,存在ξ∈[a,b],使得f(ξ)=[k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)]/[k
1
+k
2
+…+k
n
] 即k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/nkR4777K
0
考研数学三
相关试题推荐
设y=y(x)由x-∫1x+ye-t2dt=0确定,则=______.
当x→1时,的极限为().
设U=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy-y=0与ez-xz=0确定,求
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=_______.
设u=f(),其中f(s,t)二阶连续可偏导,求du及
设u=u(x,y,z)连续可偏导,令若=0,证明:u仅为Θ与φ的函数.
设u=f(x,y,xyz),函数z=z(x,y)由exyz=(xy+z-t)dt确定,其中f连续可偏导,h连续,求x-y.
求极限
设f(xz)=tln(1+u2)du,g(x)=(1一cost)dt,则当x→0时,f(x)是g(x)的().
设随机变量X,Y不相关,X~U(-3,3),Y的密度为fY(y)=根据切比夫不等式,设随机变量X1,X2,…,X10相互独立,且Xi~π(i)(i=1,2,…,10),Y=Xi,根据切比雪夫不等式,P{4<Y<7)≥____________.
随机试题
认知是指主体对态度对象的认知,包括感知、_______、理解、看法等。
Do_____youthinkisright,_____difficultiesyoumayhave.
皮损有网状纹与白色小点的是:皮损有薄膜现象、筛状出血的是:
下列说法错误的是
A.羟肟酸铁反应B.茚三酮颜色反应C.FeCl3反应D.麦芽酚反应E.坂口反应
A.滋阴熄风B.镇肝熄风,滋阴潜阳C.凉肝熄风,增液舒筋D.滋肾阴,补肾阳,开窍化痰E.平肝熄风,清热活血,补益肝肾
信息管理工作流程不包括()。
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计.
Itisnotverydifficulttofindyourwayfromthestationtotheschool.Whenyoucomeoutofthestation,turnleftandwalku
________toschoollifewaslessdifficultthanthepupilhadexpected.
最新回复
(
0
)