首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫02f(χ)dχ|≤2.
设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫02f(χ)dχ|≤2.
admin
2019-08-23
41
问题
设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫
0
2
f(χ)dχ|≤2.
选项
答案
由微分中值定理得f(χ)=f(0)f′(ξ
1
)χ,其中0<ξ
1
<χ, f(χ)=f(2)=f′(ξ
2
)(χ-2),其中χ<ξ
2
<2, 于是[*] 从而|∫
0
2
f(χ)dχ|≤∫
0
2
|f(χ)|dχ=∫
0
1
|f(χ)|dχ+∫
1
2
|f(χ)|dχ ≤∫
0
1
2χdχ+∫
1
2
2(2-χ)dχ=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/noA4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在(a,b)内,g(x)≠0;(2)在(a,b)内至少存在一点ξ,使
设λ0为可逆矩阵A的一个特征值,证明λ0≠0,且是A的逆矩阵A一1的一个特征值.是A的伴随矩阵A*的一个特征值.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f’(c)|≤2a+
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值。
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
计算积分
计算(x2+y2)dxdy,其中D是由y=一x,所围成的平面区域。[img][/img]
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
随机试题
关于法的效力,下列说法中哪一项是错误的?()
项目成本核算时,应坚持同步原则的三同步是()的同步。
()也称期限错配风险,是最主要和最常见的利率风险形式。
文档中如果有绘制的图形时,必须在()方式下才能被显示出来。
下列旋律转调前后的调式音乐分别为()。
推铅球中,滑步技术动作的要求是()。
关于业主大会,下列说法错误的是()。
1946年6月26日,国民党军队挑起全国性内战的起点是大举围攻()
证明:函数在区域上的最小值为8
(30)指对主体访问和使用客体的情况进行记录和审查,以保证安全规则被正确执行,并帮助分析安全事故产生的原因。
最新回复
(
0
)