首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
admin
2018-11-11
61
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
选项
答案
f(x)=f(c)+f’(c)(x-c)+[*](x-c)
2
,其中ξ介于c与x之间.
解析
转载请注明原文地址:https://kaotiyun.com/show/FRj4777K
0
考研数学二
相关试题推荐
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
已知随机变量X的分布函数F(x)是连续的严格单调函数,Y=1一2X,F(0.25)=0.75,P{Y≤k}=0.25,则k=__________.
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2.(2)P-1AP.(3)AT.(4).α肯定是其特征向量的矩阵共有()
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α1,α2,α3,α4,α5)x=α5的通解.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1.
半圆形闸门半径为R(米),将其垂直放入水中,且直径与水面齐,设水密度ρ=1.若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P为()
要设计一形状为旋转体水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受上部桥墩的平均压强为常数p.设水泥的比重为ρ,试求桥墩的形状.
设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P点的引力公式F=.
随机试题
中国坚持走和平发展道路的根据有
现代物流质量管弹的核心是( )和( )管理。
A、Brushingteethtwiceaday.B、Flossingteethonceaday.C、Avoidingeatingsaltysnacks.D、Seeingdentistsregularly.C由女士所回答的
含锑药物的砷盐检查方法为
蛔虫病的诊断,以下各项中最有意义的是
中国证监会的某证券监管派出机构于2011年5月在对天地上市公司(以下简称天地公司)进行例行检查时,发现该公司存在以下事实:(1)天地公司报送的2010年年度报告显示:截至2010年12月31日,该公司经审计的合并会计报表净资产总额为26888万
在Word文档中选定文本后,移动该文本的方法可以()。
国家骨干网由工业与信息化部承建,供各电信运营企业有偿使用。()
下列关于视图的叙述,不正确的有()。
根据以下资料,回答问题。资料中失业率最高与最低的国家(地区),其幸福指数相差()。
最新回复
(
0
)