首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
admin
2022-03-23
88
问题
设n维列向量α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0对任意的n维列向量β,向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,则参数a,b应满足条件( )。
选项
A、a=2b
B、a=-2b
C、a=b
D、a=-b
答案
A
解析
方法一
因α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0 (*)
要求向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,其中β是任意n维列向量,利用(*)式,取常数k
1
=1,k
2
=-2,k
3
=3,对向量组a
1
+αβ,α
2
+αβ,α
3
作线性组合,得到
(α
1
+αβ)-2(α
2
+bβ)+3α
3
=α
1
-2α
2
+3
3
+(a-2b)β=(a-2b)β
故当a=2b时,对任意的n维向量β均有α
1
+αβ-2(α
2
+bβ)+3α
3
=0,即当a=2b时,对任意n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,故应选A.
方法二
α
1
+αβ,α
2
+bβ,α
3
线性相关,可以得出r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对矩阵(α
1
+αβ,α
2
+bβ,α
3
)作初等列变换(不改变秩)有
(α
1
+αβ,α
2
+bβ,α
3
)→(α
1
+αβ,α
2
+bβ,α
1
+αβ-2(α
2
+bβ)+3α
3
=(α
1
+αβ,α
2
+bβ,(a-2b)β)
(α
1
+αβ,α
2
+bβ,0)
故当a=2b时,r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对任意的n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,应选A。
转载请注明原文地址:https://kaotiyun.com/show/o6R4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,则()
设随机变量X与Y均服从正态分布,X~N(μ,42),Y~N(μ,52),记p2=P{X≤μ一4},p2=P{Y≥μ+5},则()
设β1,β2为非齐次方程组的解向量,α1,α2为对应齐次方程绀的解,则()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
设常数x>0,求极限
设总体X~N(μ1,σ2),y~N(μ1,σ2)。从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,…,Yn记样本均值分别为是σ2的无偏估计。求:Z的方差DZ.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
设(X,Y)~f(x,y)=(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
随机试题
有以下程序#includeintf(intm){staticintn=0;n+=m;returnn;}main(){intn=0;printf("%d,",f(++n));printf("%d\n",
企业进货业务涉及的基本凭证是
(2011年10月)领导工作中经常使用的“解剖麻雀”的方法,属于_____。
A.补肾益气,调理冲任B.理气活血,祛瘀C.养阴清热,调经D.健脾燥湿化痰,活血调经E.以上都不是
根据合伙企业法律制度的规定,下列各项中,有限合伙人不能用作合伙企业出资的有()。
根据下面材料回答问题。截至2011年年末,T市城镇职工基本医疗保险参保人员474.52万人,城乡居民基本医疗保险参保人员498.30万人,城镇职工基本养老保险参保人员458.70万人,城乡居民基本养老保险参保人员97.80万人,失业保险参保职工258.7
行政强制措施由法律、法规或者规章设定。()
标志着拿破仑退出法国政治舞台,也成为以后失败的代名词指的是()。
Cultureisactivityofthought,andreceptivenesstobeautyandhumanefeeling.【C1】________ofinformationhavenothingtodowit
WhatisTRUEaboutBerkin?
最新回复
(
0
)