首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
admin
2022-03-23
59
问题
设n维列向量α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0对任意的n维列向量β,向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,则参数a,b应满足条件( )。
选项
A、a=2b
B、a=-2b
C、a=b
D、a=-b
答案
A
解析
方法一
因α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0 (*)
要求向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,其中β是任意n维列向量,利用(*)式,取常数k
1
=1,k
2
=-2,k
3
=3,对向量组a
1
+αβ,α
2
+αβ,α
3
作线性组合,得到
(α
1
+αβ)-2(α
2
+bβ)+3α
3
=α
1
-2α
2
+3
3
+(a-2b)β=(a-2b)β
故当a=2b时,对任意的n维向量β均有α
1
+αβ-2(α
2
+bβ)+3α
3
=0,即当a=2b时,对任意n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,故应选A.
方法二
α
1
+αβ,α
2
+bβ,α
3
线性相关,可以得出r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对矩阵(α
1
+αβ,α
2
+bβ,α
3
)作初等列变换(不改变秩)有
(α
1
+αβ,α
2
+bβ,α
3
)→(α
1
+αβ,α
2
+bβ,α
1
+αβ-2(α
2
+bβ)+3α
3
=(α
1
+αβ,α
2
+bβ,(a-2b)β)
(α
1
+αβ,α
2
+bβ,0)
故当a=2b时,r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对任意的n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,应选A。
转载请注明原文地址:https://kaotiyun.com/show/o6R4777K
0
考研数学三
相关试题推荐
设函数则在(-∞,+∞)内
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(n-6,a+δ)时,必有
设函数f(x,y)连续,则二次积分dx∫sinx1f(x,y)dy等于()
设f(x)=1nx-,则f(x)=()
已知随机变量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,则随机变量(Y1,Y2)的概率密度f2(y1,y2)=()
若函数u=,其中f是可微函数,且=G(x,y)u,则函数G(x,y)=()
若正项级数收敛,级数发散,则()
求数列极限:
求的间断点,并判断其类型.
随机试题
InBritain,peoplehavedifferentattitudestothepolice.Mostpeoplegenerally【C1】______themandthejobtheydo—althoughther
肝硬化最突出的临床表现是
阿司匹林适用于
某城市给水工程项目,总承包商将给水管道工程分包给具有相应资质能力的承包商。该分包商在施工中的一些情况如下:(1)大型球墨铸铁管采用原土地基。(2)球墨铸铁管接口采用人工推入式接口。(3)承插式铸铁管接口材料使用的石棉必须是4F
下列各项中,不属于供应商义务的有()。
下列关于最低结算备付金限额的说法中,正确的是()。Ⅰ.最低备付可用于完成交收,但不能划出Ⅱ.中国结算公司对结算参与人资金交收账户设定最低结算各付金限额Ⅲ.对于最低结算备付金比例,债券品种按15%计收,债券以外的其他证券品种按20%计收Ⅳ.结
甲、乙、丙依次比邻而居。甲为修房向乙提出在其院内堆放建材,乙不允。甲遂向丙提出在其院内堆放,丙要求甲付费200元,并提出不得超过20天,甲同意。修房过程中,甲搬运建材须从乙家门前经过,乙予以阻拦。对此,下列哪一种说法不正确?()
激发、维持和指引个体学习活动的心理动因或内部动力称为()。
I/O接口位于
Inafamilywheretherolesofmenandwomenarenotsharplyseparatedandwheremanyhouseholdtasksaresharedtoagreateror
最新回复
(
0
)