首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
设n维列向量α1,α2,α3满足α1-2α2+3α3=0对任意的n维列向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件( )。
admin
2022-03-23
87
问题
设n维列向量α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0对任意的n维列向量β,向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,则参数a,b应满足条件( )。
选项
A、a=2b
B、a=-2b
C、a=b
D、a=-b
答案
A
解析
方法一
因α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0 (*)
要求向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,其中β是任意n维列向量,利用(*)式,取常数k
1
=1,k
2
=-2,k
3
=3,对向量组a
1
+αβ,α
2
+αβ,α
3
作线性组合,得到
(α
1
+αβ)-2(α
2
+bβ)+3α
3
=α
1
-2α
2
+3
3
+(a-2b)β=(a-2b)β
故当a=2b时,对任意的n维向量β均有α
1
+αβ-2(α
2
+bβ)+3α
3
=0,即当a=2b时,对任意n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,故应选A.
方法二
α
1
+αβ,α
2
+bβ,α
3
线性相关,可以得出r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对矩阵(α
1
+αβ,α
2
+bβ,α
3
)作初等列变换(不改变秩)有
(α
1
+αβ,α
2
+bβ,α
3
)→(α
1
+αβ,α
2
+bβ,α
1
+αβ-2(α
2
+bβ)+3α
3
=(α
1
+αβ,α
2
+bβ,(a-2b)β)
(α
1
+αβ,α
2
+bβ,0)
故当a=2b时,r(α
1
+αβ,α
2
+bβ,α
3
)≤2,对任意的n维列向量β,有α
1
+αβ,α
2
+bβ,α
3
线性相关,应选A。
转载请注明原文地址:https://kaotiyun.com/show/o6R4777K
0
考研数学三
相关试题推荐
设f(x)是连续函数,F(x)是f(x)的原函数,则
若已知f(cosx)dx=().
设函数f(x,y)连续,则二次积分dx∫sinx1f(x,y)dy等于()
已知随机变量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,则随机变量(Y1,Y2)的概率密度f2(y1,y2)=()
若函数u=,其中f是可微函数,且=G(x,y)u,则函数G(x,y)=()
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
[*][*]【思路探索】根据无穷小与极限之间的关系表示f(x),综合运用极限的四则运算法则及洛必达法则即得结果.
当x→0时,(1+xsin2x)a-1~1-cosx,求a.
随机试题
A.桃红饮加味B.炙甘草汤加味C.独活寄生汤D.蠲痹汤痹证日久,除见关节肿痛外,兼见气血不足及肝肾亏虚症状,治疗宜选用
和肝性脑病程度平行的检查指标是
患者,女,48岁。有口腔黏膜粗涩感,进刺激性食物时感疼痛半年。检查发现其舌背左右有各一黄豆大小白色病损,浅淡,表面乳头消失,质软,双颊自口角至颊脂垫尖处广泛白色角化网纹,基底充血发红。双舌缘舌腹也可见类似病损。对于该患者,最恰当的治疗方案是
钢筋机械连接的主要特点是()。
不影响机械设备安装精度的因素是( )。
在沥青路面施工中,当符合下列( )情况时应浇洒粘层沥青。
按照企业会计准则的规定,确定企业金融资产预期信用损失的方法是()。(2020年)
根据下表回答下列问题。下列年度金融业就业人员平均工资增长率最高的是()。
Itisoftensaidthatthesubjectstaughtinschoolsaretooacademicinorientationandthatitwouldbemoreusefulforchildr
IthinkwhenIheardthenews,Iwasatschool,____________(要不然就是正和一个朋友一起度假).
最新回复
(
0
)