首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
admin
2019-09-29
90
问题
设a
1
,a
2
...a
n
为n个n维向量,证明:a
1
,a
2
,...a
n
线性无关的充分必要条件是任一n维向量总可由a
1
,a
2
...a
n
线性表示。
选项
答案
设a
1
,a
2
...a
n
线性无关,对任意的n维向量a,因为a
1
,a
2
...a
n
,a一定线性相关,所以a可由a
1
,a
2
...a
n
唯一线性表示,即任一n维向量总可由a
1
,a
2
...a
n
线性表示,反之,设任一n维向量总可由a
1
,a
2
...a
n
线性表示, [*] 则e
1
,e
2
,...,e
n
可由a
1
,a
2
...a
n
线性表示,故a
1
,a
2
...a
n
的秩不小于e
1
,e
2
,...,e
n
的秩,而e
1
,e
2
,...,e
n
线性无关,所以a
1
,a
2
...a
n
的秩一定为n,即a
1
,a
2
...a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/oFA4777K
0
考研数学二
相关试题推荐
函数f(x,y)在(0,0)点可微的充分条件是()
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μλ2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
设向量β可由向量组α1,α2,…,α3线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【】
下列命题正确的是().
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α2=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=______.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中求矩阵A.
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
随机试题
骨骼肌是由骨骼肌纤维组成,肌纤维由肌原纤维组成,肌原纤维是由粗肌丝、细肌丝组成的。()
A、固肾涩精B、健脾温肾C、温肾散寒,固肾涩精D、益气,固表,止汗E、补肾缩尿金锁固精丸的功能是
蔬菜基地备案有效期为( )年。
米克尔维奇和布德罗提出的四种人力资源管理模式中,产业模式的主要特征是()。
下列属于建构主义学习理论观点的是()。
2008年,中国大地上堪称祸福更替,悲喜交集。所谓“福”和“喜”,大抵是百年一遇,普照人心,如迎接北京奥运会和残奥会,纪念改革开放30周年,而所谓“祸”与“悲”,则属于_______,_______。填入画横线部分最恰当的一项是()。
在1970年到1980年之间,美国工业的能源消耗量在达到顶峰后又下降,这导致1980年虽然工业总产量有显著提高,但工业的能源总耗用量却低于1970年的水平。在那些年里,工业部门一定采取了高效节能措施才取得如此惊人的成果。下面哪个若正确将最反对上面推理的结论
______isthenationalsymbolofAustralia.
Menhavetraveledever【C1】______theyfirstappearedontheearth.【C2】______primitivetimestheydidnottravelforpleasureb
Inthecauseofequalrights,feminists(女权主义者)havehadmuchtocomplainabout.Butonestrikingpieceofinequalityhasbeen【S
最新回复
(
0
)