首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1一α2,Aα3=α1一α2+4α3. 求矩阵A的特征值;
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1一α2,Aα3=α1一α2+4α3. 求矩阵A的特征值;
admin
2017-03-02
49
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是三维线性无关的向量组,且Aα
1
=α
1
+3α
2
,Aα
2
=5α
1
一α
2
,Aα
3
=α
1
一α
2
+4α
3
.
求矩阵A的特征值;
选项
答案
令P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P可逆.因为Aα=α+3α,Aα=5α一α,Aα=α一α+4α
3
,所以(Aα
1
,4α
2
,Aα
3
)=(α
1
+3α
2
,5α
1
一α
2
,α
1
一α
2
+4α
3
),从而A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*]或者[*]得A的特征值为λ
1
=一4,λ
2
=λ
3
=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/oHH4777K
0
考研数学三
相关试题推荐
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设n维行向量α=(1/2,0,…,0,1/2),矩阵A=E-αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB=
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设总体X服从(0,θ](θ>0)上的均匀分布,X1,X2,…,Xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设二维正态变量(X,Y)的边缘分布为X一N(1,22),Y一N(0,1)且pxy=0,则P{X+1,
设X2,X2,…,Xn是取自总体,N(μ,σ2)的样本,若是σ2的无偏估计量,则C=().
命题“①若X、Y服从于正态分布且相互独立,则(X,Y)服从于二维正态分布;②若X、Y,服从于正态分布,则(X,Y)服从于维正态分布;③若(X,Y)服从于二维正态分布,则X+Y服从于一维正态分布;④(X,Y)服从于二维正态分布的充分必要条件是X、Y分别服从于
ln2本题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法.[解法一]因为所以而故原式=In2.[解法二]
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
A.昆布B.鳖甲C.芒硝D.五味子E.甘草
同一规格的驱动气体储存容器,其高度差不宜超过()。
中小企业实施会计电算化的合理做法是()。
A公司2011年至2012年发生如下投资业务,有关资料如下:(1)A公司2011年1月2日发行股票1000万股(每股面值1元,每股市价5元)从B公司原股东处取得B公司60%的股权,能够对B公司实施控制,在此之前,A公司与B公司原股东不存在关联方关
在我国革命战争时期,曾作为重要革命根据地的地区有()。
逮捕犯罪嫌疑人、被告人,一律经过人民检察院批准。( )
哈拉巴文化
某测验包含32道四择一选择题,若被试随机作答,其成绩分布的方差为()
十九大综合分析国际国内形势和我国发展条件,将我国从2020年到21世纪中叶的新时代中国特色社会主义发展的战略安排确定为()
Thedoctorpreferredtoresignratherthanbeaccusedpubliclyofinfamousconduct.
最新回复
(
0
)