首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:当x>0时,不等式(1+x)ln2(1+x)<x2成立.
求证:当x>0时,不等式(1+x)ln2(1+x)<x2成立.
admin
2019-02-20
42
问题
求证:当x>0时,不等式(1+x)ln
2
(1+x)<x
2
成立.
选项
答案
【证明一】 令f(x)=x
2
-(1+x)ln
2
(1+x),则有f(x)在[0,+∞)三阶可导且f(0)=0, f’(x)=2x-ln
2
(1+x)-2ln(1+x),f’(0)=0, [*] 于是f"(x)当x≥0时单调增加,又f"(0)=0,所以当x>0时f"(x)>f"(0)=0.从而f’(x)当x≥0时单调增加,又f’(0)=0,故当x>0时f’(x)>f’(0)=0.因此f(x)当x≥0时单调增加,又f(0)=0,所以当x>0时f(x)>f(0)=0.原不等式得证. 【证明二】 由【证明一】求得f"(x)后,因为当x>0时[*]所以f"(x)与x~ln(1+x)同号.由于G(x)[*]x-ln(1+x)满足在[0,+∞)连续,且G(0)=0,[*]([*]x>0),可见当x>0时G(x)>0,于是f"(x)>0.由此可得f’(x)在x≥0单调增加,又f’(0)=0,于是f’(x)>0([*]x>0).所以f(x)在x≥0单调增加,又f(0)=0,故f(x)>0当x>0时成立,即x
2
>(1+x)ln
2
(1+x)([*]x>0). 【证明三】 由【证明一】已求得f(0)=0,f’(0)=0,f"(0)=0,f’"(x)>0(x>0),于是,将f(x)在x=0处展开为带拉格朗日余项的二阶泰勒公式,有 [*] 因此(1+x)ln
2
(1+x)<x
2
当x>0时成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/oHP4777K
0
考研数学三
相关试题推荐
以下4个命题,正确的个数为()①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且③若∫-∞+∞f
当a取下列哪个值时,函数f(x)=2x3一9x2+12x—a恰好有两个不同的零点?()
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
“f(x)在点a连续”是|f(x)|在点a处连续的()条件.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
证明方程组有解的必要条件是行列式并举例说明该条件是不充分的.
设函数z=(1+ey)cosx一yey,证明:函数z有无穷多个极大值点,而无极小值点.
设函数f(x)在x=0的某一邻域内具有二阶连续导数,且f(0)=0,fˊ(0)=0,证明绝对收敛.
设函数f(u)具有二阶连续导数,函数z=f(exsiny)满足方程=(z+1)e2x,若f(0)=0,f’(0)=0,求函数f(u)的表达式.
设且f(0)=0,求函数f(x)和f(lnx).
随机试题
早期乳癌乳房内侧癌
药品质量检验依据"药典"等三级标准,是因为
具有护理专业硕士研究生学历人员在申请执业注册证明时,在教学医院或综合医院完成临床实习,其时限至少为()
安装单位技术人员对某医院综合楼消防给水系统的进场设备、材料进行安装前检查。下列检查方案中,符合相关规范要求的是()。
下列关于短期融资券的表述中,错误的是()。
知识产权是指在科学、技术、文化、教育、艺术等领域,人们对智力劳动创造的财富所享有的权利。根据上述定义,下列选项中不属于知识产权的是()。
班级管理的模式包括()。
关于建设文化宣传橱窗的报告请示××××××:为全面推进我市文化宣传创新,进一步夯实基层基础工作,全面提升基层文化宣传水平,据2012年6月20日市政府会议纪要精神,为全市8个县(区)安装文化宣传橱窗各2块,每块5万元,采取市财政补一块,县(区)
布鲁纳提出的学科学习的基本过程包括
RainbowYouwillnotalwaysseearainbowwhenitrainswhilethesunshines./Thesunmustbeintherightpositionovert
最新回复
(
0
)