首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=4x一4y—x2一y2在区域D:x2+y2≤18上的最大值和最小值.
求函数f(x,y)=4x一4y—x2一y2在区域D:x2+y2≤18上的最大值和最小值.
admin
2016-11-03
45
问题
求函数f(x,y)=4x一4y—x
2
一y
2
在区域D:x
2
+y
2
≤18上的最大值和最小值.
选项
答案
先求出f(x,y)在开区域x
2
+y
2
<18内的可能极值点.解方程组得其驻点(2,一2)∈D. 再求f(x,y)在边界x
2
+y
2
=18上的可能极值点.下用拉格朗日乘数法求之.为此,设 F(x,y,λ)=4x一4y—x
2
一y
2
+λ(x
2
+y
2
一18),则 [*] 由前两个方程易得λ=[*]于是xy一2y=xy+2x,即y=-x.将其代入第三个方程得到x=±3,y=±3,求得边界区域D上的驻点(3,一3),(一3,3).因f(2,一2)=8,f(3,一3)=6,f(一3,3)=-42,故f(x,y)在D上的最大值为8,最小值为一42.
解析
f(x,y)在有界闭区域D上连续,则f(x,y)在D上必能取得最人值和最小值,其求法与一元函数类似:先求出D内的驻点所对应的函数值;再求出边界上函数的最大、最小值点及其函数值.比较上述各点的函数值,其中最大的(最小的)就是函数在闭区域D上的最大值(最小值).
转载请注明原文地址:https://kaotiyun.com/show/oHu4777K
0
考研数学一
相关试题推荐
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设矩阵,且|A|=-1.又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
(2009年试题,二)设Ω={(x,y,z)|x2+y2+z2≤1},则=__________.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
在椭圆=1内嵌入有最大面积的四边平行于椭圆轴的矩形,求该最大面积.
随机试题
简述古埃及阿蒙霍特普四世(埃赫那吞)宗教改革的内容及其影响。(南京大学1997年世界古代中世纪史真题)
风眩常见证型有
女,42岁。间断腹泻、脓血便5年,粪便病原体培养阴性,广谱抗生素治疗无效。结肠镜检查:乙状结肠、直肠黏膜广泛弥漫充血、水肿、散在点状糜烂。最可能的诊断是
属于全合成的抗结核药是
国务院《企业职工伤亡事故报告和处理规定》规定,企业负责人接到()事故报告后,应当立即报告企业主管部门和企业所在地有关部门。
标志标明“封存”字样的计量器具,所处的状态是()。
下列各项中,属于影响未分配利润金额的有()。
生产物流的流程主要有()。
职务发明,是指企业、事业单位、社会团体、国家机关的工作人员执行本单位的任务或者主要是利用本单位的物质条件所完成的职务发明创造。根据上述定义,下列属于职务发明的是()。
StatisticsI.Statisticsin【T1】________A.Irregularitiesintheballoting:thethird-partycandidatePatBuchanangot【T2】____
最新回复
(
0
)