首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=4x一4y—x2一y2在区域D:x2+y2≤18上的最大值和最小值.
求函数f(x,y)=4x一4y—x2一y2在区域D:x2+y2≤18上的最大值和最小值.
admin
2016-11-03
44
问题
求函数f(x,y)=4x一4y—x
2
一y
2
在区域D:x
2
+y
2
≤18上的最大值和最小值.
选项
答案
先求出f(x,y)在开区域x
2
+y
2
<18内的可能极值点.解方程组得其驻点(2,一2)∈D. 再求f(x,y)在边界x
2
+y
2
=18上的可能极值点.下用拉格朗日乘数法求之.为此,设 F(x,y,λ)=4x一4y—x
2
一y
2
+λ(x
2
+y
2
一18),则 [*] 由前两个方程易得λ=[*]于是xy一2y=xy+2x,即y=-x.将其代入第三个方程得到x=±3,y=±3,求得边界区域D上的驻点(3,一3),(一3,3).因f(2,一2)=8,f(3,一3)=6,f(一3,3)=-42,故f(x,y)在D上的最大值为8,最小值为一42.
解析
f(x,y)在有界闭区域D上连续,则f(x,y)在D上必能取得最人值和最小值,其求法与一元函数类似:先求出D内的驻点所对应的函数值;再求出边界上函数的最大、最小值点及其函数值.比较上述各点的函数值,其中最大的(最小的)就是函数在闭区域D上的最大值(最小值).
转载请注明原文地址:https://kaotiyun.com/show/oHu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P|x<y|=().
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数)
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.
设二维随机变量(X,Y)在矩形域D={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记U=求概率P{U>0|V=0}.
随机试题
特发性肺纤维化肺功能的特点是
设备承揽合同承揽人的义务为()。
下列关于其他项目清单计价表的叙述中,正确的是()。
按《注册建造师执业管理办法(试行)》规定,不属于机电工程注册建造师执业工程范围的是()等安装工程。
根据保险法律制度的规定,下列关于不定值保险合同的说法中正确的是()。
打击是社会治安综合治理的(),是落实综合治理其他措施的前提条件。
We’vebeenhavingthewrongdiscussionaboutglobalization.【F1】Foryears,we’vearguedoverwhetherthisorthatindustryandit
已知英文大写字母D的ASCII码的值是44H,那么英文字母G的ASCII码的值为十进制数
A、 B、 C、 D、 C图片上看不到(A)所提到的电脑屏幕,而且也不是(B)所说的购物场景。另外,也不像(D)所说的那样在买什么东西,所以正确答案是(C)。
TaskOne—Theindustriestheyreported•Forquestions13-17,matchtheextractswiththeindustries,listedA-H.•Foreach
最新回复
(
0
)