首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
admin
2018-05-25
52
问题
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大?
选项
答案
E(T)=-1×P(X<10)+20×P(10≤X≤12)-5P(X>12) =-φ(10-μ)+20F(φ(12-μ)-φ(10-μ)]=5[1-φ(12-∥)] =25φ(12-μ)-21φ(10-μ)-5 令 [*] 解得 [*] 所以当μ≈10.9时,销售一个零件的平均利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/oIW4777K
0
考研数学三
相关试题推荐
设随机变量U在[-2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y)].
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
设随机变量X与Y相互独立,且X~N(0,σ∫12),Y~N(0,σ∫22),则概率P{X-Y|<1}()
设二维连续型随机变量(X,Y)的概率密度为f(x,y),则随机变量Z=Y-X的概率密度fz(z)=()
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知F(0)=,则()
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数,
设f(x)∈C[1,+∞),广义积分∫1+∞f(x)dx收敛,且满足f(x)=则f(x)=________.
求幂级数的收敛域,并求其和函数.
随机试题
简述毛泽东行政组织思想的渊源。
下列哪些情况常常与再生障碍危象有关
保险人是否支付保险费取决于保险事故是否发生,这一特征表明保险合同是()。
下列选项中,()进出口不列人海关统计。
基金、股票与债券的差异不包括()。
事后处理是指证券监督管理机构对市场操纵行为者的处理及操纵者对受损当事人的损害赔偿。()
下列对劳动者权益的保护表现为优先保护的是()。
毕业前夕,毕业生宿舍管理有很多重点难点,作为一名宿舍管理员,你怎么解决这些重点难点?
有条理地概述这些资料所反映的主要内容,字数不超过200字。要求:全面,有条理,有层次。用不超过350字的篇幅,提出解决给定资料所反映问题的方案。要有条理地说明,要体现针对性和可行性。
MarkwasastudentatPekingUniversityfrom1996~2000,during_______________________(在这段时间里,他工作努力并很快当选为学生会主席).
最新回复
(
0
)