首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且求证:存在ξ∈(a,+∞),使f’(ξ)=0.
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且求证:存在ξ∈(a,+∞),使f’(ξ)=0.
admin
2017-05-10
55
问题
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且
求证:存在ξ∈(a,+∞),使f’(ξ)=0.
选项
答案
若f(x)≡f(a),则结论显然成立,下设f(x)≠f(a),于是[*],使得f(x
0
)≠f(a).为确定起见,无妨设f(x
0
)>f(a)(否则用一f(x)代替f(x)进行讨论). 令[*]则f(x)<m<f(x
0
).由f(x)在[a,x
0
]上连续知,[*],使f(α)=m. 又因[*],从而[*],使f(x
1
)<m,由f(x)在[x
0
,x
1
]上连续,且f(x
0
)>m>f(x
1
)知,[*],使f(β)=m. 综合可得,f(x)在区间[β,β]上连续且可导,又f(α)=f(β),故由罗尔定理可知,[*],使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oPH4777K
0
考研数学三
相关试题推荐
如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图片分别是直径为1的下、上半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=,则下列结论正确的是
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1,线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
设n阶矩阵求A的特征值和特征向量;
设an>0(n=1,2,…,且an收敛,常数λ∈(0,π/2),则级数(-1)n(ntanλ/n)a2n
求下列函数在指定区域D的最大、最小值:(1)f(x,y)=x2+2xy+3y2,D是以点(-1,1),(2,1),(-1,2)为顶点的闭三角形区域;(2)f(x,y)=sinx+siny+sin(x+y),D为0≤x≤2π,0≤y≤2π;(3)f(x
把第二类曲面积分化为第一类曲面积分:(1)∑为坐标面x=0被柱面|y|+|z|=1所截的部分,并取前侧;(2)∑为平面z+x=1被柱面x2+y2=1所截的部分,并取下侧;(3)∑为平面3x+2y+z=1位于第一象限的部分,并取上侧;(4)∑为抛物
设函数f(x)在点x=a处可导,则甬数|f(x)|在点x=a处不可导的充分条件是().
设X1,X2,…,Xn是来自正态总体,N(μ,σ2)的随机样本,其中μ未知,σ2已知,则样本的函数中不是统计量的是_____.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
计算二重积分,其中D={(x,y)|x2+y2≤x+y+1}.
随机试题
正常人体的主要储能物质
在国际贸易中,直接影响到合同的签订及以后履行,并关系到双方经济利益的工作是()。
组成城市各项物质要素的现有状况,近期内建设或改进的可能及其服务水平与质量所指的是()。
某机电安装公司承建了一植物油厂的锅炉机电安装工程,为保证质量、加快进度、降低成本,该公司项目部组织有关技术人员进行施工方案设计,为了选择确定能保证焊接质量的焊接方法,已初选出电渣焊、埋弧焊、CO2气体保护焊、混合焊四个焊接方案。根据调查资料和本公司实践经验
下列选项中,不可以对股票基金的风格暴露进行分析的是()。
雪茄烟适用从价定率和从量定额相结合的复合计征办法征收消费税。()(2017年)
三餐分配要合理,是指()。
关于课程目标的水平研究最为著名的是教育家()
学习动机的两个基本成分是__________和__________,两者相互作用形成学习的动机系统。
TeachersintheUnitedStatesearnlessrelativetonationalincomethantheircounterpartsinmanyindustrializedcountries,ye
最新回复
(
0
)