首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
admin
2016-10-26
89
问题
解下列微分方程:
(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)y″+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)
+y″+y′+y=0的通解.
选项
答案
(Ⅰ)对应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4, 所以,其通解为[*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*](e
3x
-e
3x
). (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为[*](x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 A=0.B=[*]. 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oTu4777K
0
考研数学一
相关试题推荐
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
求点(2,1,0)到平面3x+4y+5z=0的距离.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
根据题意,令[*]将点(2,1,1)代入,上式=(1,1,1).
求微分方程y〞+2yˊ-3y=e-3x的通解.
曲面(z-a)ψ(x)+(z-b)φ(y)=0与x2+y2=1,z=0所围立体的体积V=________(其中φ为连续正值函数,a>0,b>0).
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
随机试题
X62W型铣床的()采用了反接制动的停车方法。
________是实行半总统半议会制决策体制的典型国家;________是实行委员会制的典型国家。
某公司原有资本1000万元,其中债务资本400万元(每年负担利息30万元),普通股资本600万元(发行普通股12万股,每股面值50元),企业所得税税率为30%。由于扩大业务,需追加筹资300万元,其筹资方式有三个:一是全部发行普通股,增发6万股,每股面值5
下列哪项不是婴儿急性上呼吸道感染的并发症()
我国扶植中小企业政策规定:凡符合国家产业政策技术改造项目的国有设备投资,按()比例抵免企业所得税。
马克思在研究战争与和平的关系时指出:“战争比和平发达得早;某些经济关系,如雇佣劳动、机器等等,怎样在战争和军队等等中比在资产阶级社会内部发展得早。生产力和交往关系的关系在军队中也特别显著。”这一论述说明了一个重要观点,即()。
《奥格斯堡和约》
基本以下题干,回答问题在某一演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1到7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行,张和王既可以唱奇数号
HowtoSpeakGoodEnglishI.IntroductionA.Manylearnershavingdifficultyincommunicatingduetothelackof【T1】______andr
Wellknownforher________andtough-mindedmoviecriticism,columnistPaulinealsopossessesanextensiveknowledgeofthetec
最新回复
(
0
)