首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
解下列微分方程: (Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解; (Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)+y″+y′+y=0的通解.
admin
2016-10-26
58
问题
解下列微分方程:
(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)y″+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)
+y″+y′+y=0的通解.
选项
答案
(Ⅰ)对应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4, 所以,其通解为[*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*](e
3x
-e
3x
). (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为[*](x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 A=0.B=[*]. 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oTu4777K
0
考研数学一
相关试题推荐
有一块等腰直角三角形钢板,斜边为a,欲从这块钢板中割下一块矩形,使其面积最大,要求以斜边为矩形的一条边,问如何截取?
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
差分方程yt+1-yt=t2t的通解为_______.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设f(x)连续,(A为常数),求φ’(t)并讨论φ’(x)在x=0处的连续性.
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
随机试题
表示该用户所拨号码为空号的信号音叫拨号音。()
A.血氨升高B.血清淀粉酶升高C.血钙增高D.血清胃泌素增高E.血清AFP增高
为低钾血症病人静脉补钾时其尿量每小时应超过
A.副作用B.继发反应C.后遗反应D.停药反应D.毒性反应E.变态反应患者因失眠睡前服用苯巴比妥钠100mg,第二天上午呈宿醉现象,这属于
关于车辆购置税免税的规定,下列说法正确的有()。
某商品原报单价为:CIFC2%NewYorkUSD3000/MT,外商要求将佣金率提高至5%,在保持我方净收入不变的情况下,应如何报价?(保留两位小数)
审计人员审计×公司2003年度会计报表,将其交易和账户划分为销售与收款循环、购货与付款循环、生产与服务循环、筹资与投资循环。在一般情况下,审计人员应将应收账款及营业费用项目划入()。
不属于《事业单位人事管理条例》规定的奖励种类的是()。
目前,我国城市规划管理实行的“一书两证”制度中的“两证”是指建设用地规划许可证和建设工程规划许可证,“一书”是指()。
如果有定义LOCALdata,data的初值是
最新回复
(
0
)