首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年)设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
(2004年)设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
admin
2019-03-21
63
问题
(2004年)设有齐次线性方程组
试问a取何值时,该方程组有非零解,并求出其通解.
选项
答案
对方程组的系数矩阵作初等行变换,有 [*] 当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 χ
1
+χ
2
+χ
3
+χ
4
=0, 由此得基础解系为 η
1
(-1,1,0,0)
T
,η
2
=(-1,0,1,0)
T
,η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 χ=k
1
η
2
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a≠0时, [*] 可知a=-10时,r(A)=3<4,故方程组有非零解,其用自由未知量表示的通解为 χ
2
=2χ
1
,χ
3
=3χ
1
,χ
4
=4χ
1
,χ
1
任意 由此得基础解系为 η=(1,2,3,4)
T
, 于是所求方程组的通解为χ=kη,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/oUV4777K
0
考研数学二
相关试题推荐
求I=[1+yf(x2+y2)]dxdy,D由y=x3,y=1,x=-1围成,f是连续函数.
已知函数f(x,y,z)=x3y2z及方程x+y+z-3+e-3=e-(x+y+z),(*)(Ⅰ)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求;(Ⅱ)如果z=z(x,
证明:,其中p>0.
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
已知齐次方程组(Ⅰ)解都满足方程x1+x2+x3=0,求a和方程组的通解.
(1999年)设f(χ)是连续函数,F(χ)是,(χ)的原函数,则【】
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
随机试题
著名边塞诗人岑参最擅长的诗歌体裁是()。
讲座、讨论会、交谈属于()
呋塞米应用后,尿中哪些物质排出减少:
参与血小板聚集反应的是哪种血小板膜糖蛋白
矿业工程在颁发工程接受证书前的(),业主(监理工程师)可以发布变更指示或以要求承包商递交建议书的任何一种方式提出变更。
下列各项不属于最低生活保障标准确定方法的是( )。
根据《证券投资基金运作管理办法》的规定,货币市场基金、中短债基金不得投资于流通受限证券。()
在当代资本主义国家中出现了“无人工厂”,这种资本主义条件下的生产自动化从本质上看
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
位于
最新回复
(
0
)