首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
在学习了“直线与圆的位置”后,教师要求学生解决如下问题。 求过点P(2,3)且与O:(x-1)2+)y2=1相切的直线l的方程。 一位学生给出的解法如下。 由O:(x-1)2+y2=1可知,圆心O(1,0),半径为1。 设直
在学习了“直线与圆的位置”后,教师要求学生解决如下问题。 求过点P(2,3)且与O:(x-1)2+)y2=1相切的直线l的方程。 一位学生给出的解法如下。 由O:(x-1)2+y2=1可知,圆心O(1,0),半径为1。 设直
admin
2020-08-12
33
问题
在学习了“直线与圆的位置”后,教师要求学生解决如下问题。
求过点P(2,3)且与O:(x-1)
2
+)y
2
=1相切的直线l的方程。
一位学生给出的解法如下。
由O:(x-1)
2
+y
2
=1可知,圆心O(1,0),半径为1。
设直线l的斜率为k,则其方程为y-3=k(x-2),即kx-y-2k+3=0,
因为直线l与O:(x-1)
2
+y
2
=1相切,
所以圆心O到直线l的距离为d=|k-2k+3|/(k
2
+1)=1,解得k=4/3,
所以,所求直线l的方程为4x-3y+1=0。
问题:
针对该题的教学,谈谈该如何设置问题,帮助学生避免出现上述错误。
选项
答案
针对本题,结合案例学生出现的错误,教师应该根据该题的教学步骤,在教学过程中,采取相应策略设置问题。下面结合教学过程进行分析: ①教师与学生一起回忆旧知,提出问题,“过圆外一点能作几条圆的切线”。 ②教师结合本题让学生画出该题相关的图像,设置问题引导学生全面考虑直线l的位置,如“直线l与圆相切有几种情况?” ③教师通过提问引导学生复习直线斜率的存在情况,如“直线斜率存在时对应图像是什么样子,不存在时如何表示?” ④教师结合本题引导学生根据直线斜率的存在情况运用分类讨论思想解题,可设置问题如“当斜率存在时,直线l的方程如何求得?当斜率不存在时,直线l的方程是什么?”
解析
转载请注明原文地址:https://kaotiyun.com/show/oYtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
简述高中思想政治课课程的性质。
我国社会主义公民道德建设以()为核心。
下列选项与漫画《心病》的哲学寓意最贴切的是()。
在宁夏北周李贤墓中出土的鎏金银瓶,是通过丝绸之路流传到中国的具有萨珊风格的金银器。银瓶腹中部半浮雕的6个人物,系手工打压而成,工艺精湛,银瓶上的人物故事源于希腊,银瓶精美绝伦,独一无二。该项出土文物()。
设{an}为数列,对于“存在正数M,对任意正整数n,有|an|≤M”的否定(即数列{an}无界)是()。
若函数f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时f(x)>0,又f(a)<0,则()。
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,求a。
“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称:会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并
已知|a|=1,|b|=2。(1)若a//b,求a.b;(2)若a、b的夹角为60°,求|a+b|;(3)若a一b与a垂直,求当k为何值时,(ka—b)⊥(a+2b)。
在△ABC中,内角A,B,C的对边分别为a,b,c.已知,求的值.
随机试题
简述第二审民事调解书和再审民事调解书的概念。
以下关于冠状动脉动脉瘤的描述哪项是正确的
下列诗句不是出自唐朝诗人的是()。
2014年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利69周年座谈会在人民大会堂举行。中共中央总书记、国家主席、中央军委主席习近平发表重要讲话,强调()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是()。
伊壁鸠鲁派
单边主义
下列关于功能性注释中,不正确的是(59)。
所谓“数字签名”是_______。
W:Wouldyoudomeafavor?M:________
最新回复
(
0
)