首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值是0,1,一l,则下列选项中不正确的是( )
设三阶矩阵A的特征值是0,1,一l,则下列选项中不正确的是( )
admin
2019-04-09
63
问题
设三阶矩阵A的特征值是0,1,一l,则下列选项中不正确的是( )
选项
A、矩阵A—E是不可逆矩阵。
B、矩阵A+E和对角矩阵相似。
C、矩阵A属于l与一1的特征向量相互正交。
D、方程组Ax=0的基础解系由一个向量构成。
答案
C
解析
因为矩阵A的特征值是0,1,一1,所以矩阵A一层的特征值是一1,0,一2。由于λ=0是矩阵A—E的特征值,所以A—E不可逆。
因为矩阵A+E的特征值是1,2,0,矩阵A+E有三个不同的特征值,所以A+E可以相似对角化。(或由A~Λ→A+E~Λ+E而知A+E可相似对角化)。
由矩阵A有一个特征值等于0可知r(A)=2,所以齐次线性方程组Ax=0的基础解系由n一r(A)=3—2=1个解向量构成。
C选项的错误在于,若A是实对称矩阵,则不同特征值的特征向量相互正交,而一般n阶矩阵,不同特征值的特征向量仅仅线性无关并不一定正交,故选C。
转载请注明原文地址:https://kaotiyun.com/show/oZP4777K
0
考研数学三
相关试题推荐
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|又f(1)=0,证明:|∫01f(x)dx|≤ln2.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+by22-4y32,求:(1)常数n,b;(2)正交变换的矩阵Q.
设A~B,.(1)求a,b;(2)求可逆矩阵P,使得P-1AP=B.
设z=f(x2+y2,xy,x),其中f(u,v,w)二阶连续可偏导,求.
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
设n阶矩阵A与对角矩阵合同,则A是().
设z=f(exsiny,x2+y2),且f(u,v)二阶连续可偏导,求.
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
设随机变量X与Y独立,X在区间[0,2]上服从均匀分布,Y服从参数为2的指数分布,求:(Ⅰ)二维随机变量(X,Y)的联合概率密度;(Ⅱ)概率P{X≤Y}。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(z),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
随机试题
Hewasamedicalstudentbeforehe______.
毛泽东在延安整风运动中,最早提出“惩前毖后,治病救人”方针的著作是
不属于糖尿病眼部并发症的是
常用血液保存液ACD和CPD中的D指
室内墙面、柱面和门洞口的阳角,应采用()水泥砂浆作暗护角。
变电所内,用于110kV有效接地系统的母线型无间隙金属氧化物避雷器的持续运行电压和额定电压应不低于下列哪组数值?
证监会收到发行人可转换公司债券发行申请文件后的3个工作日内作出是否受理的决定。()
我国现存最古老的佛教寺院是香严寺。
—I’mtiredoffacingsomanyproblems.—Cheerup!Youcanget______them.
近年来,越南、菲律宾在南海问题上频频向中国发难,对抗行动持续升级,南海问题再次成为焦点。海洋是中国实现可持续发展的重要空间和资源保障,建设海洋强国,是国家重要发展战略。坚决维护国家海洋权益,是()的重要职责。
最新回复
(
0
)