首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形 5y12+by22-4y32,求: (1)常数n,b; (2)正交变换的矩阵Q.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形 5y12+by22-4y32,求: (1)常数n,b; (2)正交变换的矩阵Q.
admin
2017-12-31
66
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+ax
2
2
+x
3
2
-4x
1
x
2
-8x
1
x
3
-4x
2
x
3
经过正交变换化为标准形
5y
1
2
+by
2
2
-4y
3
2
,求:
(1)常数n,b; (2)正交变换的矩阵Q.
选项
答案
(1)令[*],则f(x
1
,x
2
,x
3
)=X
T
AX, 矩阵A的特征值为λ
1
=5,λ
2
=b,λ
3
=-4, [*] (2)将λ
1
=λ
2
=5代入(λE-A)X=0,即(5E-A)X=0, 由5E-A=[*]得λ
1
=λ
2
=5对应的线性无关的特征向量为α
1
= [*] 将λ
3
=-4代入(λE-A)X=0,即(4E+A)X=0, 由4E+A=[*]得λ
3
=-4对应的线性无关的特征向量为 [*] 所求的正交变换矩阵为Q=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/xTX4777K
0
考研数学三
相关试题推荐
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,求产生故障仪器的台数X的数学期望和方差.
证明:
函数y=f(x)满足条件f(0)=1,f’(0)=0,当x≠0时,f’(x)>0,则它的图形是()
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为求矩阵A;
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数为()
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:(1)若f(x)>g(x),则fˊ(x)>gˊ(x);(2)若fˊ(x)>gˊ(x),则f(x)>g(x).因此()
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
随机试题
女性,25岁,近年来难于控制反复持续地服用一种药,药量不断增加,不服或减少服用量则感痛苦难忍,因而无法停服该种药物该患者目前处于
《法经》
医院感染的病原体
计划评价的作用可概括为
患者,男,50岁。因钝器击伤头部1小时后入院。患者昏迷、呕吐,双侧瞳孔不等大。血压180/102mmHg。行硬膜下血肿清除术+碎骨片清除术,留置引流管送回病房。术后引流管护理措施正确的是
胃溃疡患者,突然腹部剧痛,分诊护士发现患者血压测不到,体温正常,腹部叩诊呈浊音,该护士考虑患者可能是
在现实社会中,会计职业道德准则和会计法律制度的关系是()。
注册会计师于2014年3月20日完成了对甲公司2013年度财务报表的审计工作,甲公司于3月30日将已审计财务报表与审计报告一同对外报出。(1)3月31日甲公司发生火灾,两个存放产成品的仓库均遭受大火焚烧,大火扑灭后完整的存货仅存5%,损失重大。(2)4
下列关于青海省的气候特征描述正确的是()。
有关能力、知识和技能的关系的描述,下列说法正确的是()。
最新回复
(
0
)