首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
admin
2019-06-28
30
问题
设α,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别为α,β的转置。证明:r(A)≤2。
选项
答案
r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β)≤2。
解析
转载请注明原文地址:https://kaotiyun.com/show/opV4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
设α1,α2,…,αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2,…,αn可由β1,β2,…,βn线性表示的充要条件是β1,β2,…,βn线性无关。
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
随机试题
如果项目自身已有端子标记,端子代号既可以采用项目自身的端子标记也可自行定义新的代号。()
[*]
一患者连续戴用同一全口义齿20年近期因出现到处压痛而重新制作了一副新全口义齿,但仍然出现广泛性咀嚼痛,固位不好,自凝塑料重衬无改善。可以试采取的措施
下列各项中属于接受风险的措施的是()。
Bankershavebeenblamingthemselvesfortheirtroublesinpublic.Behindthescenes,theyhavebeentakingaimatsomeoneelse:
以下叙述中错误的是______。
广州某公司的总经理刘汉需要制作公司的年度报告,但他最近有其他更重要的工作要做。请你按照如下要求帮他完成年度报告的制作工作:为文档添加水印,水印文字为“机密内容,不得外传”。
Hisproductiontechniquesareelaborateandnearlegendary,buteveniftheycouldbe____,itwouldn’tbethesameforanyotherp
Itisreallysurprisingthatthehotelshouldbe______bookedevenatthistimeoftheyear.
SpaceTourism[A]Makeyourreservationsnow.Thespacetourismindustryisofficiallyopenforbusiness,andticketsaregoi
最新回复
(
0
)