首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[一2,2]上连续的偶函数,且f(x)>0,F(x)=∫-22|x—t|f(t)dt,求F(x)在[一2,2]上的最小值点.
设f(x)为[一2,2]上连续的偶函数,且f(x)>0,F(x)=∫-22|x—t|f(t)dt,求F(x)在[一2,2]上的最小值点.
admin
2018-05-16
74
问题
设f(x)为[一2,2]上连续的偶函数,且f(x)>0,F(x)=∫
-2
2
|x—t|f(t)dt,求F(x)在[一2,2]上的最小值点.
选项
答案
F(x)=∫
-2
2
|x—t|f(t)dt=∫
-2
x
(x—t)f(t)dt+∫
x
2
(t一x)f(t)dt =x∫
-2
x
f(t)dt—∫
-2
x
tf(t)dt—∫
2
x
tf(t)dt+x∫
2
x
f(t)dt, F’(x)=∫
-2
x
f(t)dt+∫
-2
x
f(t)dt=∫
-2
0
f(t)dt+∫
0
x
f(t)dt+∫
2
0
f(t)dt+∫
0
x
f(t)dt, 因为∫
-2
0
f(t)dt=∫
0
2
f(t)dt,所以F’(x)=2∫
0
x
f(t)dt. 因为f(x)>0,所以F’(x)=0得x=0, 又因为F"(x)=2f(x),F”(0)=2f(0)>0,所以x=0为F(x)在(一2,2)内唯一的极小值点,也为最小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/pAk4777K
0
考研数学二
相关试题推荐
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
证明:|arctanx-arctany|≤|x-y|
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设z=f(lny-sinx),
试求多项式P(x)=x2+ax+b,使得积分取最小值.
设A,B为同阶方阵,若A,B相似,证明A,B的特征多项式相等;
设f(x)是三次多项式,且有.
设有多项式P(x)=x4+a3x3+a2x2+a1x+a0,又设x=x0是它的最大实根,则P’(x0)满足
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
随机试题
高效液相色谱法测茶叶中的咖啡碱时,进样量为()。
洪秀全分封诸王是在()
《灯下漫笔》的体裁是()
前庭器官中各类毛细胞的适宜刺激是
下列骨折中,最不稳定的是
背景资料某火灾报警及联动控制系统工程项目,某专业工程公司通过投标获得了该项目的施工任务,该公司在施工前根据施工总平面图设计编制了施工方案和施工进度计划,接着对施工总平面图设计做了分析评价,发现施工总平面图设计有不妥之处,责成有关人员对施工总平面图设
背景材料:某公路工程施工总承包二级企业承包了单跨跨度为120m,桥梁总长800m的桥梁工程项目,桥梁上部结构施工中出现垮塌事故。监理工程师立即报告建设单位,施工单位着手事故处理。问题:该质量事故由谁负责报告?
简单任务下的广度是()个项目。
银行向企业发放一笔贷款,额度为1000万元,期限为5年,年利率为7%试用单利和复利两种方式计算银行应得的本利和。
(2011下集管)某大型系统集成项目由多个不同的承包商协作完成,项目涉及了分别代表7家公司的24名主要干系人,项目经理陈某直接管理的团队有7名项目小组长,每个项目小组长负责一支约15人的工作组。陈某意识到必须特别注意进行有效的整体变更控制,这表明他最应该关
最新回复
(
0
)