首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
admin
2021-01-25
54
问题
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.
求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ;
选项
答案
解一 将α
1
,α
2
正交化.令ξ
1
=α
1
=[-1,2,-1]
T
,则[*] 再分别将ξ
1
,ξ
2
,α
3
单位化,得到 [*] 其中Q为正交矩阵,且Q
T
AQ=Λ. 解二 下面不用正交化,凑出正交化的三个特征向量. 由于A只有一个重特征值λ
1
=λ
2
=0,所要求的A的3个两两正交的特征向量只需利用α
1
与α
2
的线性组合,找出一个与α
1
且同时与α
3
正交的特征向量即可,令 ξ
2
=α
1
+2α
2
=[-1,2,-1]
T
+2[0,-1,1]
T
=[-1,0,1]
T
. 显然,ξ
2
与α
1
=ξ
1
正交,同时也与α
3
正交,再将它们单位化,即 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且有Q
T
AQ=diag(0,0,3). 解三 设A的属于特征值λ
1
=λ
2
=0的特征向量β=[x
1
,x
2
,x
3
]
T
,则β与α
3
正交,即x
1
+x
2
+x
3
=0.求解此齐次方程即得属于λ
1
=λ
2
的两个线性无关的特征向量为 β
1
=[-1,1,0]
T
, β
2
=[1,1,-2]
T
. 显然β
1
与β
2
正交,β
1
,β
2
与α
3
也正交,将其单位化便得到所求的正交矩阵,即 [*] 且使Q
-1
AQ=diag(0,0,3)=Λ.
解析
转载请注明原文地址:https://kaotiyun.com/show/qAx4777K
0
考研数学三
相关试题推荐
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得()
两个4阶矩阵满足A2=B2,则
[2015年]设矩阵且A3=O.若矩阵X满足X-XA2-AX+AXA2=E,其中E为三阶单位矩阵,求X.
[2003年]设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.
[2011年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.求a的值;
[2018年]已知a是常数,且矩阵可经初等列变换化为矩阵求a;
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
随机试题
患者腰部疼痛,重着而热,暑湿阴雨天疼痛加重,小便短赤,舌苔黄腻,脉濡数。问题2:其治法是
A.左室舒张期过短B.左室排血量急剧下降C.左室舒张期负荷突然明显加重D.左室充盈障碍E.左室后负荷突然明显加重急性广泛心肌梗死引起急性肺水肿的发病机制是()
2009年7月1日,人民法院裁定受理债务人甲公司的破产申请,并指定某律师事务所担任破产管理人,管理人接管甲公司后,发现以下事实:(1)甲公司欠A企业100万元的货款。2008年6月1日,应债权人A企业的要求,甲公司以自己100万元的设备设定抵押。(2)20
设备采购合同中,设备供货方应承担违约责任的情形有( )。
计算机具有超强的记忆存储能力,可以存储大量的会计资料并对它们进行处理,因此大大提高了会计工作的()。
在习惯于讨论“报网一体”,习惯于总是呼吁“不要让门户网站免费掠夺传统报纸的报道”时,我们往往忽视另一方面:谁能够适应媒介融合,充分利用网络,使之成为建构自身“新闻网”的有效工具,并推进相应的人员变化、组织变迁、价值重塑,谁才能不被媒介融合的新传播体系淘汰。
有关数据显示,从2005年以来,广东高校毕业生自主创业的数量约占当年高校毕业生的1%~2%。以2008年为例,应届高校毕业生中选择自主创业的仅占1.2%。而在西方发达国家,这个数字为20%~30%。由此看来,西方发达国家的大学生更具有创业才能。以下哪一项正
向量组α1﹦(1,3,5,-1)T,α2﹦(2,-1,-3,4)T,α3﹦(6,4,4,6)T,α4﹦(7,7,9,1)T,α5﹦(3,2,2,3)T的一个极大线性无关组是()
Traditionally,universitieshavecarriedouttwomainactivities:researchandteaching.Manyexpertswouldarguethatboththes
A、About4000B.C.B、About3000B.C.C、About5000B.C.D、About2000B.C.B
最新回复
(
0
)