首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
admin
2021-01-25
105
问题
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.
求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ;
选项
答案
解一 将α
1
,α
2
正交化.令ξ
1
=α
1
=[-1,2,-1]
T
,则[*] 再分别将ξ
1
,ξ
2
,α
3
单位化,得到 [*] 其中Q为正交矩阵,且Q
T
AQ=Λ. 解二 下面不用正交化,凑出正交化的三个特征向量. 由于A只有一个重特征值λ
1
=λ
2
=0,所要求的A的3个两两正交的特征向量只需利用α
1
与α
2
的线性组合,找出一个与α
1
且同时与α
3
正交的特征向量即可,令 ξ
2
=α
1
+2α
2
=[-1,2,-1]
T
+2[0,-1,1]
T
=[-1,0,1]
T
. 显然,ξ
2
与α
1
=ξ
1
正交,同时也与α
3
正交,再将它们单位化,即 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且有Q
T
AQ=diag(0,0,3). 解三 设A的属于特征值λ
1
=λ
2
=0的特征向量β=[x
1
,x
2
,x
3
]
T
,则β与α
3
正交,即x
1
+x
2
+x
3
=0.求解此齐次方程即得属于λ
1
=λ
2
的两个线性无关的特征向量为 β
1
=[-1,1,0]
T
, β
2
=[1,1,-2]
T
. 显然β
1
与β
2
正交,β
1
,β
2
与α
3
也正交,将其单位化便得到所求的正交矩阵,即 [*] 且使Q
-1
AQ=diag(0,0,3)=Λ.
解析
转载请注明原文地址:https://kaotiyun.com/show/qAx4777K
0
考研数学三
相关试题推荐
函数y=+6x+1的图形在点(0,1)处的切线与x轴交点的坐标是()
an和bn符合下列哪一个条件可由bn发散?()
A、 B、 C、 D、 C
[2005年]已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
[2002年]设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
[2002年]设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.
[2002年]设A为三阶实对称矩阵,且满足条件A2+2.4=O,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
[2018年]设随机事件A,B,C相互独立,且P(A)=P(B)=P(C)=则P(AC|A∪B)=_________.
[2007年]设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
随机试题
以下关于关系模型的完整性约束的描述,错误的是__________。
正常成人胸部摄影曝光时间选择主要依据
A.年龄B.药物的剂量C.疾病因素D.遗传因素E.药物的理化性质中国人和日本人多为快乙酰化型,而白种人多为慢乙酰化型的影响因素为()。
患者,女性,28岁。妊娠32周,自觉头疼、眼花3天。检查发现:血压160/110mmHg,胎心、胎位正常,双下肢水肿,尿蛋白>0.5g/24h。此患者的诊断是子痫前期。针对该患者所采取的护理措施不正确的是
下列情况中,应开具增值税专用发票的是()。
甲、乙、丙、丁四家公司与杨某、张某拟共同出资设立一注册资本为400万元的有限责任公司。除杨某与张某拟以120万元货币出资外,四家公司的下列非货币财产出资中,符合公司法律制度规定的是()。
苞谷:玉米( )
设区域D为x2+y2≤R2,则=________
有以下程序 main( ) {inta[3][3],*p,i; p=&a[0][0]; for(i=0;i
建立表结构的SQL命令是()
最新回复
(
0
)