首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解. 求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ;
admin
2021-01-25
81
问题
[2006年] 设三阶实对称矩阵A的各行元素之和都为3,向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.
求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ;
选项
答案
解一 将α
1
,α
2
正交化.令ξ
1
=α
1
=[-1,2,-1]
T
,则[*] 再分别将ξ
1
,ξ
2
,α
3
单位化,得到 [*] 其中Q为正交矩阵,且Q
T
AQ=Λ. 解二 下面不用正交化,凑出正交化的三个特征向量. 由于A只有一个重特征值λ
1
=λ
2
=0,所要求的A的3个两两正交的特征向量只需利用α
1
与α
2
的线性组合,找出一个与α
1
且同时与α
3
正交的特征向量即可,令 ξ
2
=α
1
+2α
2
=[-1,2,-1]
T
+2[0,-1,1]
T
=[-1,0,1]
T
. 显然,ξ
2
与α
1
=ξ
1
正交,同时也与α
3
正交,再将它们单位化,即 [*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且有Q
T
AQ=diag(0,0,3). 解三 设A的属于特征值λ
1
=λ
2
=0的特征向量β=[x
1
,x
2
,x
3
]
T
,则β与α
3
正交,即x
1
+x
2
+x
3
=0.求解此齐次方程即得属于λ
1
=λ
2
的两个线性无关的特征向量为 β
1
=[-1,1,0]
T
, β
2
=[1,1,-2]
T
. 显然β
1
与β
2
正交,β
1
,β
2
与α
3
也正交,将其单位化便得到所求的正交矩阵,即 [*] 且使Q
-1
AQ=diag(0,0,3)=Λ.
解析
转载请注明原文地址:https://kaotiyun.com/show/qAx4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设矩阵A=,矩阵B满足AB+B+A+2E=0,则|B+E|=()
曲线y=xe1/x2
[2009年]设X1,X2,…,Xn是来自二项分布总体B(n,P)的简单随机样本,[*]和S2分别为样本均值和样本方差.记统计量[*]则E(T)=___________.
[2006年]设总体X的概率密度为f(x)=e-|x|/2,-∞<x<+∞.X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则E(S2)=___________.
[2003年]设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
[2014年]证明n阶矩阵相似.
[2018年]设随机事件A,B,C相互独立,且P(A)=P(B)=P(C)=则P(AC|A∪B)=_________.
(1995年)设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx(2)利用(1)的结论计算定积分
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
随机试题
下列不构成专利权终止的法律事实是()
口底及颌下的急性蜂窝织炎危及生命的并发症是【】
十二指肠切除,可影响下述哪些营养素的吸收()。
设计利用穿堂风进行自然通风的板式建筑。其迎风面与夏季最多风向的夹角宜为()。
分析评价开发区规划实施对生态环境的影响,主要包括()影响。
2019年12月11日晚8时15分许,某建筑高度达50m的大型商场,因发电机组电气线路短路形成高温电弧,引燃周围装饰材料并蔓延成火灾。在事故发生的第一时间,法人代表李某(该商场的消防安全责任人)立即启动应急预案,同时组织单位的义务消防队扑救火灾。与此同时,
企业发行的可转换公司债券,期末按规定计算确定的利息费用进行账务处理时,可能借记的会计科目有()。
党章规定:我国社会各方面的基层单位只要有党员三人以上的,都要成立党的基层组织。()
根据下面材料回答下列题。2007年7月份北京市下列各区县中城镇居民最低生活保障人数最少的是()。
尽管这名病人被诊断为植物状态,但她保留了理解口头______并通过大脑活动、而非语音或动作做出______的能力。“欧文表示:”她决定与我们合作,根据我们的______想象特定的任务,这是一个清楚的______行为,确凿无疑地证明,她有意识地认识自己
最新回复
(
0
)