首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-01-21
31
问题
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)—2f(x)=0的特征方程为r
2
+r—2=0,特征根为r
1
=1,r
2
=—2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
—3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为[*],则 [*] 令y"=0得x=0. 下面证明x=0是y"=0唯一的解,当x>0时, [*] 可得y">0; 当x<0时, 2x<0,2(1 +2x
2
) [*] 可得y"<0.可知x=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(一t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/pGH4777K
0
考研数学三
相关试题推荐
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式求导数f’(x);
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设X2,X2,…,Xn是取自总体,N(μ,σ2)的样本,若是σ2的无偏估计量,则C=().
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
设在D=[a,b]×[c,d]上连续,求并证明:I≤2(M一m),其中M和m分别是f(x,y)在D上的最大值和最小值.
求函数y=excosx的极值.
随机试题
下列可能成为慢性支气管炎急性发作的最主要致病菌是
新斯的明兴奋骨骼肌的作用机制是
()的实施为我国工业区域结构的调整提供了良好的机遇。
报关
外汇期货交易量较小的原因主要有()。
简述威尼斯画派的艺术特色及其代表人物。
函数在其定义域内是否连续?作出f(x)的图形.
Hewaskeptinappallingconditionsinprison.
To:ALLSTAFFSubject:RecyclingCampaignDate:July1,2007Inanon-going,earth-friendlyefforttorecyclemorewasteforabe
Ishouldbemuchobligedifyou_____metotheairport.
最新回复
(
0
)