首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2ex。 (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2017-01-21
79
问题
已知函数f(x)满足方程f"(x)+f’(x)—2f(x)=0及f"(x)+f(x)=2e
x
。
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(Ⅰ)齐次微分方程f"(x)+f’(x)—2f(x)=0的特征方程为r
2
+r—2=0,特征根为r
1
=1,r
2
=—2,因此该齐次微分方程的通解为f(x)=C
1
e
x
+C
2
e
—2x
。 再由f"(x)+f(x)=2e
x
得2C
1
e
x
—3C
2
e
—2x
=2e
x
,因此可知C
1
=1,C
2
=0。 所以f(x)的表达式为f(x)=e
x
。 (Ⅱ)曲线方程为[*],则 [*] 令y"=0得x=0. 下面证明x=0是y"=0唯一的解,当x>0时, [*] 可得y">0; 当x<0时, 2x<0,2(1 +2x
2
) [*] 可得y"<0.可知x=0是y"=0唯一的解。 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(一t
2
)dt 在x=0左、右两边的凹凸性相反,因此(0,0)点是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/pGH4777K
0
考研数学三
相关试题推荐
[*]
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为____________.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=e4πt2+求f(t).
设可微函数f(x,y)在点(xo,yo)取得极小值,则下列结论正确的是
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则=______________.
设f(x)在x=0的某邻域内连续,,则f(x)在x=0处
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
[*]由题意可知:
随机试题
张某将祖传的古董交给李某,向李某借款5万,并约定张某不能按时归还借款时李某有权将古董变卖,所得价款优先偿还李某借款。在这个过程当中李某是()。
广泛存在于以生产导向为营销理念的组织当中的营销组织模式为()
A.1mgB.高C.低D.十二指肠及空肠E.粪便排出
多器官功能不全综合征的普遍特征不包括
我国会计行政法规不包括()。
商业银行可以采用()的方式设定每个维度的限额。
2018年3月末,我国本外币贷款余额130.45万亿元,同比增长11.9%。月末人民币贷款余额124.98万亿元,同比增长12.8%,增速与上月末持平,比上年同期高0.4个百分点。一季度人民币贷款增加4.86万亿元,同比多增6339亿元。分部门看,住户部
张先生2000年2月1日存入2000元,原定期1年。由于张先生急需用钱,于2000年11月1日提取该笔存款,假设一年定期存款月利率为9‰,活期储蓄存款月利率为3‰,则张先生可以获得利息为()。
•Readthetextbelowaboutsupplier.•Inmostofthelines41-52,thereisoneextraword.Itiseithergrammaticallyincorrec
A、Thetransactionscanbedoneanywhereatanytime.B、Someoneelsecanhelpyoudealwithtransactions.C、Thecostofthesales
最新回复
(
0
)