首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
已知函数f(x)=x一alnx(a∈R) (1)当a=2时,求曲线yf(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值。
已知函数f(x)=x一alnx(a∈R) (1)当a=2时,求曲线yf(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值。
admin
2015-04-21
101
问题
已知函数f(x)=x一alnx(a∈R)
(1)当a=2时,求曲线yf(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值。
选项
答案
函数f(x)的定义域为(0,+∞),f’(x)=1一[*]。 (1)当a=2时,f(x)=x一2lnx,f’(x)=1—[*](x>0), 因而f’(1)=1,f’(1)=—1, 所以曲线y=f(x)在点A(1,f(1))处的切线方程为y—1=—(x—1), 即x+y—2=0。 (2)由f’(x)=[*],x>0知: ①当n≤0时,f’(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值。 ②当a>0时,由f’(x)=0,解得x=a。 又当x∈(0,a)时,f’(x)<0;当x∈(0,+∞)时,f’(x)>0, 从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a—alna,无极大值。 综上,当a≤0时,函数f(x)无极值; 当a>>0时,函数f(x)在x=a处取得极小值a—alna,无极大值。
解析
转载请注明原文地址:https://kaotiyun.com/show/pItv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
我国在中小学生中广泛开展以“八荣八耻”为主要内容的社会主义荣辱观教育:这样做的哲学依据是()。
阅读材料,回答问题。课题:《难报三春晖》教学实录导入新课:用多媒体显示唐代诗人孟郊《游子吟》这首诗。并提问:《游子吟》这首诗的内容是什么?它表达了作者的什么情感?由此引入新课《难报三春晖》的学习。多媒体显示:难报三春晖。教学过程合作探究活动一:
人民教育出版社普通高中课程标准实验教科书《思想政治》必修3第三课《文化的多样性与文化的传播》的第二框《文化在交流中传播》一共包括以下三个小标题:(1)生活中的文化传播(2)大众传媒:现代文化传播的手段(3)文化交流:做传播中华文化的使者请以此为内容
下图所示为中央财政用于社会保障和就业、教育、医疗卫生的支出状况。图中曲线的变化,突出体现的财政作用是()。①巩固国家政权,维护社会秩序②健全社会保障体系,改善人民生活③调控收支水平,促使经济平稳运行④完善社会公共服务体系,创建和谐生活环境
下面是四幅需求曲线变动图。在市场经济条件下,假定甲、乙两商品互为替代品,当甲商品价格上升时,反映乙商品需求曲线变动趋势的是()。
求方程x4+x3+x2+1=0四个复根中落在第一象限的那个根,要求用根式表达。(提示:做变量替换z≈+)
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.针对求解一元二次方程,请设计若干题目,包括例题3~5个,练习题2~3个,帮助学生理解
随机试题
“中国起源论”的代表人物有()
在行政赔偿案中,经复议维持的案件,赔偿义务机关是()
TCP/IP是Internet的基本通信协议,由四层组成,它们是应用层、传输层以及________。
患者男性,36岁。反复发作上腹部疼痛伴呕吐2个月,呕吐物为宿食,呕吐后症状减轻,近1周症状加重而入院。体格检查:消瘦,轻度水肿,上腹部正中有轻压痛,有振水音。最重要的医疗诊断是
二妙散的功用是()
村民甲(18周岁)路过村民乙家门口时,用一块石头向乙家所养且卧在乙家门口的狗打去,该狗立即扑向甲,甲因跑得快未被狗咬,狗咬伤了甲旁边的行人丙。丙因躲避,将路边丁叫卖的西瓜踩碎3个。丙因治伤支付医药费80元。丁的3个西瓜价值16元。对丙、丁的损失应由谁赔偿?
总监理工程师变更时,应经项目法人同意,并通知()。
下列各项中,符合《企业内部控制应用指引第15号——全面预算》规定的是()。
2013年5月24日,中共中央政治局就大力推进生态文明建设进行第六次集体学习。中共中央总书记习近平在主持学习时强调,生态环境保护是功在当代、利在千秋的事业。要清醒认识保护生态环境、治理环境污染的紧迫性和艰巨性.清醒认识加强生态文明建设的重要性和必要性,以对
Inourculture,thesourcesofwhatwecallasenseof“mastery”--feelingimportantandworthwhile--andthesourcesofwhatwec
最新回复
(
0
)