首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫0xte﹣t2f(t)dt是(﹣∞,﹢∞)上的( )
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫0xte﹣t2f(t)dt是(﹣∞,﹢∞)上的( )
admin
2019-12-06
32
问题
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫
0
x
te
﹣t
2
f(t)dt是(﹣∞,﹢∞)上的( )
选项
A、有界偶函数
B、无界偶函数
C、有界奇函数
D、无界奇函数
答案
A
解析
首先讨论F(x)的奇偶性:
对任意的x∈(﹣∞,﹢∞),有
F(﹣x)=∫
0
﹣x
te
﹣t
2
f(t)dt,
令t=﹣u,则
F(﹣x)=∫
0
x
ue
﹣u
2
f(﹣u)du=∫
0
x
ue
﹣u
2
f(u)du=F(x),
故F(x)是(﹣∞,﹢∞)上的偶函数。
其次讨论F(x)的有界性:
因F(x)是(﹣∞,﹢∞)上的偶函数,故可只讨论x≥0时,F(x)的有界性。由于
|F(x)|=∫
0
x
te
﹣t
2
f(t)dt≤∫
0
x
te
﹣t
2
|f(t)|dt
≤m∫
0
﹢∞
te
﹣t
2
dt=
,
所以F(x)是(﹣∞,﹢∞)上的有界函数。
转载请注明原文地址:https://kaotiyun.com/show/pUA4777K
0
考研数学二
相关试题推荐
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
设f(x)=,且f’(0)存在,则a=______,b=________,c=_______
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.最大体积为______.
在xOy平面上,平面曲线方程则平面曲线与x轴的交点的坐标是___________.
设D={(x,y)|x2+y2≤1,x≥0},则二重积分
已知某产品总产量的变化率是时间t(单位:年)的函数f(t)=2t+5(t≥0)求第一个五年和第二个五年的总产量各为多少?
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.当k为何值时,A+kE为正定矩阵?
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
求函数y=(x∈(0.+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
随机试题
被誉为“岁寒三友”的是()。
设曲线y=x-ex在点(0,-1)处与直线z相切,则直线f的斜率为().
在信用评级机构对各类证券的评级中,以()为基础的国债信用评级总是最高的。正是在这种意义上,人们通常把国债称作“金边债券”。
工程项目风险管理过程中,风险识别工作包括()。
根据《建筑业企业资质管理规定》的规定,企业取得建筑业企业资质后不再符合相应资质条件的,建设主管部门、其他有关部门根据利害关系人的请求或者依据职权,可以责令其限期改正;逾期不改的,资质许可机关可以()其资质。
研究者根据预先拟定好的问题向被调查者提出,在面对面的一问一答中搜集资料,然后对群体的心理特点及心理状态进行分析和推测,这种心理学研究方法属于()。
虽然加涅和奥苏贝尔强调的学习顺序不同,但他们所说的教材知识的层次组织是相同的。()
管理系统的研制是因为()而开始的。
Theconcernthroughouttheworldin1988forthosethreewhalesthatwerelockedintheArcticicewasdramaticproofthatwhale
AreWeReadytoOpen?Emailhasthepotentialasacost-efficientandeffectivemarketingstream.Touseitanduseit
最新回复
(
0
)