首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫0xte﹣t2f(t)dt是(﹣∞,﹢∞)上的( )
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫0xte﹣t2f(t)dt是(﹣∞,﹢∞)上的( )
admin
2019-12-06
55
问题
设f(x)是(﹣∞,﹢∞)上连续的偶函数,且|f(x)|≤m,则F(x)=∫
0
x
te
﹣t
2
f(t)dt是(﹣∞,﹢∞)上的( )
选项
A、有界偶函数
B、无界偶函数
C、有界奇函数
D、无界奇函数
答案
A
解析
首先讨论F(x)的奇偶性:
对任意的x∈(﹣∞,﹢∞),有
F(﹣x)=∫
0
﹣x
te
﹣t
2
f(t)dt,
令t=﹣u,则
F(﹣x)=∫
0
x
ue
﹣u
2
f(﹣u)du=∫
0
x
ue
﹣u
2
f(u)du=F(x),
故F(x)是(﹣∞,﹢∞)上的偶函数。
其次讨论F(x)的有界性:
因F(x)是(﹣∞,﹢∞)上的偶函数,故可只讨论x≥0时,F(x)的有界性。由于
|F(x)|=∫
0
x
te
﹣t
2
f(t)dt≤∫
0
x
te
﹣t
2
|f(t)|dt
≤m∫
0
﹢∞
te
﹣t
2
dt=
,
所以F(x)是(﹣∞,﹢∞)上的有界函数。
转载请注明原文地址:https://kaotiyun.com/show/pUA4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为___________,最大值为_________.
=__________。
作变量替换x=lnt,方程可简化为______。
已知有三个线性无关的特征向量,则x=______。
已知α1,α2,…,αt都是非齐次线性方程组Ax=b的解,如果c1α1+c2α2+…+ctαt仍是Ax=b的解,则c1+c2+…+ct=_________.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
求极限
验证函数在[0,2]上满足拉格朗日定理.
设f(x)=,g(x)在x=0连续且满足g(x)=1+2x+o(x)(x→0),又F(x)=f[g(x)],则F′(0)=
随机试题
胃、十二指肠溃疡出血的主要症状体征为
A.病起发热,皮肤干燥,咳呛少痰B.肢体困重,手足麻木,喜凉恶热C.神疲肢倦,肌肉萎缩,少气懒言D.腰膝酸软,眩晕耳呜,舌咽干燥E.手足麻木不仁,四肢青筋显露,舌痿不能伸缩痿证之脾胃虚弱证症见
出口信贷提供的资金数额一般占贸易合同金额的比例是()。
关于消费税纳税义务发生的时间,下列说法正确的是()。
You’rebusyfillingouttheapplicationformforapositionyoureallyneed;let’sassumeyouonceactuallycompletedacoupleo
纳西族聚居的丽江古城,是世界著名的文化遗产之一。()
一般资料:求助者,女性,29岁,工人。案例介绍:求助者结婚两年,因工作关系一直两地分居,最近经常因小事与丈夫发生争执,目前处于“冷战”状态。求助者感觉非常苦恼,主动前来求助。下面是心理咨询师与求助者的一段咨询谈话。求助者:我们俩总是吵架,我都快烦死了,现在
违反治安管理行为在6个月内没有被公安机关发现的,不再给予行政处罚。()
以下关于网络社区营销说法正确的是_____________。
下列标准中用于100Mbps快速以太网的标准是______。
最新回复
(
0
)