首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x,x,x)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2。 (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x,x,x)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解。
admin
2018-01-26
29
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x,x,x)化成标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
(Ⅰ)由已知可得,二次型的矩阵A=[*],且A的秩为2,从而|A|=[*]=-8a=0,解得a=0。 (Ⅱ)当a=0时,A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)
2
-1]=λ(λ-2)
2
=0, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2时,由(2E-A)x=0及系数矩阵[*],得两个线性无关的特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0时,由(0E-A)x=0及系数矩阵[*],得特征向量α
3
=(1,-1,0)
T
。 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化,即得 γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,-1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换X=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(
1
,x
2
,x
3
)=2y
1
2
+2y
2
2
。 (Ⅲ)由(Ⅰ)中结论,f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,于是得[*]所以方程f(x
1
,x
2
,x
3
)=0的通解为k(1,-1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/pcr4777K
0
考研数学一
相关试题推荐
设,求a,b的值.
设f(x)=,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X一2Y).
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(φ(2)=0.977).
证明:r(A+B)≤r(A)+r(B).
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
(1)证明:等式(2)求级数的和.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
随机试题
A.眼电图B.视网膜电图a波C.视网膜电图b波D.图形视网膜电图E.视觉诱发电位神经节细胞检查应选择
巨噬细胞集落刺激因子是指
A.商路B.细辛C.白前D.防己E.虎杖维管束次生组织不发达,其外侧有韧皮部细胞的是()
企业所得税法公布前已经批准设立的企业,依照当时的税收法律、行政法规规定,享受低税率优惠的,按照国务院规定,可以在本法施行后()年内,逐步过渡到本法规定的税率.
()就是运用多个指标对评价对象进行评价,以得出综合性结论的方法。
供热管网的各种附件中,能承受三向位移和荷载的是()。
根据《中华人民共和国遗产税暂行条例(草案)》的规定,执行遗嘱及管理遗产的直接必要费用可以按应征税遗产总额的()计算的金额扣除,但最高不能超过()元。
同步性是多媒体通信的一项重要特征,它是指多媒体通信在终端上显现的图像、声音和文字以同步的方式进行工作。下列选项中,()不是同步性在多媒体通信系统中需要实现的层面。
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
假设日标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,则在两次独立射击中至少有一次命中目标的概率α=_________.
最新回复
(
0
)