首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
admin
2015-08-17
89
问题
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+B
T
A正定.
选项
答案
必要性 取B=A
一1
,则AB+B
T
A=E+(A
-1
)
T
A=2E,所以AB+B
T
A是正定矩阵.充分性用反证法.若A不是可逆矩阵,则r(A)<n,于是存在实向量x
0
≠0使得Ax
0
=0.因为A是实对称矩阵,B是实矩阵,于是有x
0
T
(AB+B
T
A)x
0
=(Ax
0
)
T
Bx
0
+x
0
T
B
T
(Ax
0
)=0,这与AB+B
T
A是正定矩阵矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dmw4777K
0
考研数学一
相关试题推荐
改变积分次序:
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
设随机变量X3,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从N(0,4),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3,求D(Y).
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有().
随机试题
为()婴幼儿选择图书时,图书应没有背景,只有人物的动态和表情。
领导者素质、才能、知识及胆略等的综合反映是指()
杨先生,今晨因急性心肌梗死收入ICU,立即给予了心电监护和氧气吸入,神清,痛苦面容,他正承担着国家重点科研攻关项目。促进该患者舒适的首要措施是
女性,59岁。被诊断急性胰腺炎。患者发生休克时.下列哪项描述不正确
急性菌痢的基本病变为
孙中山建立的兴中会的纲领是()。
职业道德培养的首要环节是()。
某年的3月份共有5个星期三,并且第一天不是星期一,最后一天不是星期五,则该年的3月15日是()。
论述当代学制改革的趋势。
CreativeDestructionofHigherEducationA)Highereducationisoneofthegreatsuccessesofthewelfarecountry.Whatwasonce
最新回复
(
0
)