首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
admin
2015-08-17
84
问题
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+B
T
A正定.
选项
答案
必要性 取B=A
一1
,则AB+B
T
A=E+(A
-1
)
T
A=2E,所以AB+B
T
A是正定矩阵.充分性用反证法.若A不是可逆矩阵,则r(A)<n,于是存在实向量x
0
≠0使得Ax
0
=0.因为A是实对称矩阵,B是实矩阵,于是有x
0
T
(AB+B
T
A)x
0
=(Ax
0
)
T
Bx
0
+x
0
T
B
T
(Ax
0
)=0,这与AB+B
T
A是正定矩阵矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dmw4777K
0
考研数学一
相关试题推荐
,其中D由直线y=x,y=2x及x=1围成.
[*]
设g(x)=f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线,(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A一E)及行列式|A+2E|.
若三阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为三阶单位矩阵,则行列式|B|=________.
随机试题
决策民主化的特征有()
平等原则是指()。
A、遗传性球形红细胞增多症B、地中海贫血C、遗传性椭圆形红细胞增多症D、免疫性血小板减少性紫癜E、自体免疫性溶血性贫血以皮肤黏膜及内脏出血为主要表现的疾病是()
工程量清单计价中,分部分项工程的综合单价由完成规定计量单位工程量清单项目所需( )等费用组成。
固定资产变动包括()。
外部培训具体应包括()。
请认真阅读下文,并按要求作答。一个小村庄的故事山谷中,早先有过一个美丽的小村庄。山上的森林郁(yù)郁葱葱,村前河水清澈(chè)见底,天空湛(zhàn)蓝,空气清新甜润。村里住着几十户人家。不知从什么时候起,家家有了锋利的斧
取保候审由检察机关执行。()
当前微机上运行的Windows属于()。
Youmusthaveseenalotofinterestingmovies,______?
最新回复
(
0
)