首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当x→0时下列无穷小是x的n阶无穷小,求阶数n: (I)ex4-2x2-1; (II)(1+tan2x)sinx-1; (Ⅲ) (Ⅳ)sint.sin(1-cost)2dt.
当x→0时下列无穷小是x的n阶无穷小,求阶数n: (I)ex4-2x2-1; (II)(1+tan2x)sinx-1; (Ⅲ) (Ⅳ)sint.sin(1-cost)2dt.
admin
2019-07-19
86
问题
当x→0时下列无穷小是x的n阶无穷小,求阶数n:
(I)e
x
4
-2x
2
-1;
(II)(1+tan
2
x)
sinx
-1;
(Ⅲ)
(Ⅳ)
sint.sin(1-cost)
2
dt.
选项
答案
(I)e
x
4
-2x
2
-1~x
4
-2x
2
~-2x
2
(x→0),即当x→0时e
x
4
-2x
2
-1是x的2阶无穷小,故n=2. (II)(1+tan
2
x)
sinx
-1~ln[(1+tan
2
x)
sinx
-1+1] =sinxln(1+tan
2
x)~sinxtan
2
x~x.x
2
=x
3
(x→0), 即当x→0时(1+tan
2
x)
sinx
-1是x的3阶无穷小,故n=3. (Ⅲ)由1-[*]是x的4阶无穷小,即当x→0时[*]是x的4阶无穷小,故n=4. (Ⅳ) [*] 即当x→0时[*]sintsin(1-cost)
2
dt是x的6阶无穷小,故n=6.
解析
转载请注明原文地址:https://kaotiyun.com/show/pfc4777K
0
考研数学一
相关试题推荐
求曲线在点M0(1,1,3)处的切线与法平面方程。
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
设,则f(0,0)点处
曲线y=的渐近线有()。
设f(χ)在χ=1处连续,=-3.证明:f(χ)在χ=1处可导,并求f′(1).
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设有直线则L1与L2的夹角为()
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→时比z高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
简述营销组织设计的原则。
肾脏肿瘤CT扫描的扫描基线位于
调剂过程中的“三查”是
表示受治疗病人中的治愈频率评价远期疗效的常用指标
该工程预付款的起扣点为()万元。在索赔文件中,()是要注意引用的每个证据的效力或可信程度,对重要的证据资料最好附以文字说明或附以确认件。
企业取得的土地使用权通常应确认为无形资产,但改变土地使用权的用途、用于出租或资产增值目的时,应当将其转为投资性房地产。()
最早在教学理论上提出班级授课制思想的是()。
Consumerproductssuchasshampoosandsunscreens,evenonesboostedassafer,maycontainpotentiallyharmfulchemicalsnotlis
十进制数32转换成无符号二进制整数是()。
在考生文件夹下,打开文档Wordl.docx,按照要求完成下列操作并以该文件名word1.docx保存文档。将标题段文字(“宽带发展面临路径选择”)设置为三号、黑体、红色(标准色)、倾斜、居中并添加深蓝色(标准色)波浪下划线;将标题段设置为段后间距l行
最新回复
(
0
)