首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
admin
2021-11-25
61
问题
设α
1
,α
2
,α
3
,…,α
n
为n个n维向量,证明:α
1
,α
2
,α
3
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示。
选项
答案
设α
1
,α
2
,α
3
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,α
3
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,α
3
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示。 反之,设任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示, [*] 则e
1
,e
2
,e
3
,..,e
n
可由α
1
,α
2
,α
3
,…,α
n
线性表示,故α
1
,α
2
,α
3
,…,α
n
的秩不小于e
1
,e
2
,e
3
,..,e
n
的秩,而e
1
,e
2
,e
3
,..,e
n
线性无关,所以α
1
,α
2
,α
3
,…,α
n
的秩一定为n,即α
1
,α
2
,α
3
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/piy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设D=,则A31+A32+A33=_________.
下列命题正确的是()。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
求极限。
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
椭圆绕x轴旋转一周生成的旋转曲面s的面积=______.
考虑二元函数的下面4条性质(Ⅰ)f(x,y)在点(x0,y0)处连续;(Ⅱ)f(x,y)在点(x0,y0)处的两个偏导数连续;(Ⅲ)f(x,y)在点(x0,y0)处可微;(Ⅳ)f(x,y)在点(x0,y0)处的两个偏导数存在;
设{an}与{bn}为两个数列,下列说法正确的是().
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)