首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
admin
2021-11-25
77
问题
设α
1
,α
2
,α
3
,…,α
n
为n个n维向量,证明:α
1
,α
2
,α
3
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示。
选项
答案
设α
1
,α
2
,α
3
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,α
3
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,α
3
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示。 反之,设任一n维向量总可由α
1
,α
2
,α
3
,…,α
n
线性表示, [*] 则e
1
,e
2
,e
3
,..,e
n
可由α
1
,α
2
,α
3
,…,α
n
线性表示,故α
1
,α
2
,α
3
,…,α
n
的秩不小于e
1
,e
2
,e
3
,..,e
n
的秩,而e
1
,e
2
,e
3
,..,e
n
线性无关,所以α
1
,α
2
,α
3
,…,α
n
的秩一定为n,即α
1
,α
2
,α
3
,…,α
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/piy4777K
0
考研数学二
相关试题推荐
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设a1,a2...an为n个n维列向量,证明:a1,a2,...an线性无关的充分必要条件是.
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设A,B是满足AB=O的任意两个非零阵,则必有()。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
若A可逆且A~B,证明:A*~B*.
设A,B为n阶正定矩阵,证明:A+B为正定矩阵。
椭圆绕x轴旋转一周生成的旋转曲面s的面积=______.
AB=0,A,B是两个非零矩阵,则
极限=A≠0的充要条件是()
随机试题
患者高热烦渴,脉细数而疾,汗出如流油,热而黏手常见于
A.多见于中年女性B.多发生于老年人C.多见于3岁以下儿童D.青少年E.20岁以下发病率高视神经鞘脑膜瘤
A.绞窄性肠梗阻B.单纯性肠梗阻C.麻痹性肠梗阻D.痉挛性肠梗阻E.慢性肠梗阻早期蛔虫堵塞性肠梗阻属于()
(2010)图1.2—15所示电路中,若u=0.5V,i=1A,则is为()A。
下列有关固定资产折旧方法的叙述错误的是()。
工程质量监督机构应当在工程竣工验收之日起()日内,向备案机关提交工程质量监督报告。
中国现代会计之父()认为,“诚信”是会计职业道德的重要内容。
根据《中华人民共和国教师法》的规定,“受到剥夺政治权利或者故意犯罪受到有期徒刑以上刑事处罚的”教师,其教师资格将()。
公安机关权力的特殊强制性,是指公安机关权力以暴力为后盾,能够采取行政的、刑事的强制手段和措施,特别是对违法犯罪分子,可以采取人身方面的强制,而公安权力的实施对象只能服从。()
A=,求A的特征值.判断a,b取什么值时A相似于对角矩阵。
最新回复
(
0
)