首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。 证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。 证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
admin
2019-09-29
52
问题
设a
1
,a
2
,Β
1
,Β
2
为三维列向量组,且a
1
,a
2
与Β
1
,Β
1
都线性无关。
证明:至少存在一个非零向量可同时由a
1
,a
2
与Β
1
,Β
2
线性表示。
选项
答案
因为a
1
,a
2
,Β
1
,Β
2
线性相关,所以存在不全为0的常数k
1
,k
2
,l
1
,l
2
使得 k
1
a
1
+k
2
a
2
+l
1
Β
1
+l
2
Β
2
=0或k
1
a
1
+k
2
a
2
=-l
1
Β
1
-l
2
Β
2
。 令γ=k
1
a
1
+k
2
a
2
=-l
1
Β
1
-l
2
Β
2
,因为a
1
,a
2
与Β
1
,Β
2
都线性无关,所以k
1
,k
2
,l
1
,l
2
都不全为零,所以γ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zFA4777K
0
考研数学二
相关试题推荐
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μλ2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则()
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则()
随机试题
故意犯罪形态的存在范围。
博来霉素天然存在的糖肽类抗生素为
下列各项中,哪项不增加心排血量
2014年4月1日,A公司与甲银行签订一份贷款合同,约定:贷款金额为人民币1000万元,借款期限为1年。当天,A公司将其价值800万元的一宗土地的建设用地使用权抵押给甲银行,签订了抵押合同并办理了抵押登记。同时,B公司担任此笔债务的保证人,与甲银行签订了保
某上市公司针对经常出现中小股东质询管理层的情况,拟采取措施协调所有者与经营者的矛盾。下列各项中,不能实现上述目的的是()。
根据《风景名胜区管理条例》的规定,在风景名胜区内采集标本、野生药材及其他林区产品()。
A、 B、 C、 D、 A
孙某丈夫外出做买卖五年未归,也没有任何音讯,孙某欲改嫁,下面说法正确的是()。
下列侵权责任中,不存在替代责任的是()。
IcametoIndiaayearagotofindavillageinwhichIcouldliveandwritebutitwasmanymonthsbeforeIsettleddownhappil
最新回复
(
0
)