首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明: 方程xn+px+q=0(n∈N+,p,q∈R)当n为偶数时至多有两个实根;当n为奇数时至多有三个实根.
证明: 方程xn+px+q=0(n∈N+,p,q∈R)当n为偶数时至多有两个实根;当n为奇数时至多有三个实根.
admin
2022-11-23
27
问题
证明:
方程x
n
+px+q=0(n∈N
+
,p,q∈R)当n为偶数时至多有两个实根;当n为奇数时至多有三个实根.
选项
答案
令f(x)=x
n
+px+q,则f’(x)=nx
n-1
+p.当n≤3时,显然成立.当n≥4时, (ⅰ)设n为偶数.如果方程x
n
+px+q=0有三个以上的实根,则存在实数x
1
,x
2
,x
3
,使得x
1
<x
2
<x
3
,并且f(x
1
)=f(x
2
)=f(x
3
)=0.根据罗尔中值定理,存在ξ
1
∈(x
1
,x
2
),ξ
2
∈(x
2
,x
3
),使得f’(ξ
1
)=f’(ξ
2
)=0,但这是不可能的,因为f’(x)=0是奇次方程nx
n-1
+p=0,它在实数集R上有且仅有一个实根[*]故方程x
n
+px+q=0当n为偶数时至多有两个实根. (ⅱ)设n为奇数.如果方程x
n
+px+q=0有四个以上不同的实根,则根据罗尔中值定理,存在ξ
1
,ξ
2
,ξ
3
,使得ξ
1
<ξ
2
<ξ
3
,并且f’(ξ
1
)=f’(ξ
2
)=f’(ξ
3
)=0,但这是不可能的.因为f’(x)=0是偶次方程nx
n-1
+p=0,它在实数集R上最多只有两个实根.故方程x
n
+px+q=0当n为奇数时至多有三个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/plgD777K
0
考研数学一
相关试题推荐
“chun”和“qun”两个韵母的音节相同。()
根据我国《民法典》规定,下列由业主共同决定的事项中。应当经参与表决专有部分面积3/4以上的业主且参与表决人数3/4以上的业主同意的是
《中华人民共和国民法通则》第93条规定:“没有法定的或者约定的义务,为避免他人利益受损失进行管理或者服务的,有权要求受益人偿付由此而支付的必要费用。”请分析:本条规定的债的发生原因有哪些构成要件?
《中华人民共和国物权法》第70条规定:“业主对建筑物内的住宅、经营性用房等专有部分享有所有权,对专有部分以外的共有部分享有共有和共同管理的权利。”请分析:符合哪些条件可认定为本条中的“专有部分”?
某国东部沿海有5个火山岛E、F、G、H、I,它们由北至南排列成一条直线,同时发现:(1)F与H相邻并且在H的北边。(2)Ⅰ和E相邻。(3)G在F的北边某个位置。假如G和E相邻。下面哪项陈述一定为真?
一座塑料大棚中有6块大小相同的长方形菜池子,按照从左到右的次序依次排列为:1、2、3、4、5和6号。而且1号和6号不相邻。大棚中恰好需要种6种蔬菜:Q、L、H、X、S和Y。每块菜池子只能种植其中的一种。种植安排必须符合以下条件:Q在H左侧的某一块菜池中种
研究小组利用超级计算机模拟宇宙,并结合多种其他计算,证明了在我们这个加速膨胀的宇宙中,描述大尺度时空结构的因果关系网络曲线图,是一个具有显著聚类特征的幂函数曲线,和许多复杂网络如互联网、社交网、生物网络等惊人地相似。如果以上信息为真,则最能推出以
如图11-1所示,有大、小两个正方形,边长分别为12和10,则阴影部分的面积为()。
当时,两数f(x)=-x2+4x+k有最小值1,则此区间内函数f(x)的最大值为()。
求下列极限
随机试题
必须提示承兑的汇票是_________。
Moreandmorestudentswanttostudyin"hot"majors.【C1】______aresult,manystudentswantto【C2】______theirinterestsandstu
判断年龄的依据有哪些?
关于大脑半球的描述,正确的是
A.牙源性B.腺源性C.损伤性D.血源性E.医源性口腔颌面部感染的主要途径是()
心理咨询员所做的咨询记录不包括()。(2003年8月三级真题)
在中国美术史上,这是特殊的一页。在近十余年里,从现代艺术之父塞尚的作品开始,到西方当下的艺术形态,一百余年来,西方世界流行的所有艺术形式以及引发它们或它们引发的艺术思潮,几乎都在中国艺术舞台上粉墨登场——印象派、野兽派、抽象派、立体主义、未来主义
文献作为记载人类知识的最重要手段,是以()形式传递知识。
では、お先に失礼します。
Itisvirtuallyimpossibleto______thenumberofpeopleintheworldwhohaveacquiredanadequateworkingknowledgeofEnglish
最新回复
(
0
)