首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2018-04-18
172
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况.B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ptk4777K
0
考研数学二
相关试题推荐
[*]
设函数g(x)可微,h(x)=e1+g(x),hˊ(1)=1,gˊ(1)=2,则g(1)等于().
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
A、 B、 C、 D、 D
若3a2-5b<0,则方程x5+2ax3+3bx+4c=0().
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
证明:|arctanx-arctany|≤|x-y|
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=________.
随机试题
喷油泵的装配时,周围空气不应有灰尘、烟雾。()
中位数
患者男,23岁。10天前无诱因发热,体温逐渐上升,近3天体温持续38.5~39.5℃不降,伴食欲下降、乏力、腹胀。体查:T39.5℃,P83次/分,BP110/70mmHg,神清,表情淡漠,胸部可见淡红色的小丘疹,心肺(一),腹软,右下腹压痛,肝肋下
在施工平行发包模式中,业主将不同的施工任务分别委托给不同的施工单位,各个施工单位分别与业主签订合同,各个施工单位之间的关系是()。
根据《建设工程质量管理条例》,各类房屋建筑工程和市政基础设施工程应在竣工验收合格之日起()日内,将验收文件报建设行政主管部门备案。【2009年考试真题】
A、 B、 C、 D、 C题干四个图形中都含有一条长度相等的水平或竖直线,由此选择C,如图所示:
生活方式营销,是指以消费者所追求的生活方式为诉求,通过将公司的产品或品牌演化成某一种生活方式的象征,而达到吸引消费者、建立起稳定的消费群体的目的。根据上述定义,下列不属于生活方式营销的是:
【S1】【S3】
A、sociologyB、psychologyC、philosophyD、anthropologyB
A、Whetheritwillbeusedinamoralway.B、Whetheritwillbesafeenough.C、Whetheritwillresultinhorribleconsequences.D
最新回复
(
0
)