首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2018-04-18
119
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况.B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ptk4777K
0
考研数学二
相关试题推荐
[*]
[*]
函数y=x+2cosx在[0,π/2]上的最大值为________.
设函数f(x)=x.tanx.esinx,则f(x)是().
下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
若f(x)的导函数是sinx,则f(x)有一个原函数为().
设线性方程组(I)与方程x1+2x2+x3=a-1(Ⅱ)有公共解,求口的值及所有公共解.
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是().
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
(2001年试题,八)设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点.(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围成图形的面积最小.
随机试题
不抑制排卵的孕激素为:
不属于肺的宣发功能的是
在超声波雾化器工作原理中,将电能转换为超声波声能的装置是
根据世界卫生组织规定,青春期为
下列哪项支持阻塞性黄疸()
下列不属于会计科目和账户之间的联系的是()。
3~5岁幼儿常出现“造词现象”,如将“粉红”说成“小红”,把“灰色”说成“小黑”,这是幼儿()的表现。
设y=(1+x2sinx)3x,则dy∣x=π=________.
(2000年试题,十三)设某种元件的使用寿命X的概率密度为其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.
下面程序的输出结果是()。#includemain(){chara[]={’a’,’b’,’c’,’d’,’f’,’g’},*p;p=a;printf("%c\n",*p+4);}
最新回复
(
0
)