首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明 显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且 [*] 故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
证明 显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且 [*] 故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
admin
2012-08-23
88
问题
选项
答案
证明 显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且 [*] 故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/edC4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程y2+xy+x2+x=0所确定的满足y(—1)=1的隐函数,则
设函数f(x,y)在点P0(x0,y0)处的两个偏导数fˊx(x0,y0),fˊy(x0,y0)都存在,则()
若T是线性空间V中的线性变换,并且Tm-1α≠0,Tmα=0.证明:α,Tα,…,Tm-1α线性无关.
设n元线性方程组Ax=b,其中(1)证明行列式|A|=(n+1)an.(2)当a为何值时,该方程组有唯一解?求x1.(3)当a为何值时,该方程组有无穷多解?求通解.
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
证明:如果n阶矩阵满足(A—aE)(A一bE)=O(其中a≠b),那么A可对角化.
设二次型f(x1,x2,x1)=x12+x22+x32一2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=2y12+2y22+6y32,求常数a,b及所用正交变换矩阵Q.
假设二维随机变量(X,Y)在矩形G={(χ,y)|0≤χ≤2,0≤y≤1}上服从均匀分布,记(1)求U和V的联合分布;(2)求U和V的相关系数r.
设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4.且f(0)=2,求f(x)的表达式.
(2009年)设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
随机试题
我国现行财政支出分类采用了国际通行做法。即同时使用()方法对财政支出进行分类。
根据《联合国国际货物销售合同公约》的规定,对于在运输途中销售的货物,货物风险转移的时间一般是()
某女,58岁。胆结石手术后,被建议早期活动,下列解释错误的是
A.淋巴转移和种植B.血行转移和淋巴转移C.直接蔓延和种植D.直接蔓延和淋巴转移E.血行转移子宫颈癌主要播散的方式
一个地区的岩溶形态规律为既有水平发育又有垂直发育,这类岩溶最可能是在下列()项地壳运动中形成。
“谈虎色变”是一种条件反射的表现,它属于()。
习近平总书记强调,要“把对法治的尊崇、对法律的敬畏转化成思维方式和行为方式”。用法治思维求善治,即反对人治思维、特权思维,运用法律规范、法律原则、法律逻辑分析和处理我们党治国理政中面临的问题,积极推进法治国家、法治政府、法治社会建设。法治思维和人治思维的区
WhenKelseySisavathenrolledasafreshmanatLincolnAlternativeHighSchoolinWalla,Washington,inthefall,hermotherwas
A、Thelongerournapis,themoreenergywewillget.B、A20-minutenapwillhelptorestoreourenergy.C、Ashort-timenapdoes
Anewbookissuretobediscussed,and【B1】______,atcollegesthisfall.ThebookiscalledMyFreshmanYear:WhataProfesso
最新回复
(
0
)