首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2016-10-26
58
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(Ⅰ)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积为[*]f(x)dx.见图6.2.按题意 [*] [*]① (Ⅱ)转化.将方程①两边求导,则 [*]② (①中令x=0,等式自然成立,不必另加条件). f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 [*]③ (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边乘μ(t)=[*]得[f(t)e
-4t
]′=0,并由初条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/q2u4777K
0
考研数学一
相关试题推荐
[*]
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)不等价?
设n阶矩阵A与B等价,则必有().
随机试题
票据行为的构成有()。
下列各选项中的()不属于行政许可行为。
WhenPetersonwasawayonbusiness,hisneighborgavehiswife________withthehousework.
要实施整体性发展,__________必然要求推行协商民主,__________整体性发展的核心要素或内在的统领性要素是整体利益,这种整体利益把不同的群体统合在一起,__________形成了促进整体性发展的强大动力。填入画横线部分最恰当的一项是:
A.昏迷B.脑膜刺激征明显C.脑脊液大多正常D.三偏征E.失语内囊区出血和血栓的共同表现是
(2009年)一平面简谐波在弹性媒质中传播,在某一时刻,某质元正处于其平衡位置,此时它的()。
建设银行D分行要求员工每年度要通过网络学习平台参加20课时的线上教育课程,其中职业素养10课时,专业技能10课时。可供选择的职业素养课程共8门,每门2课时;可供选择的专业技能课程共10门,其中2课时的有5门,1课时的有5门,问:可供选择的课程组合共有多少种
【2015年河南洛阳.单选】“一题多解,演绎推理”是()。
Becauseofimprovementsintechnology,peoplecouldbuymanynewkindsofproductsinAmericanstores,suchashomecomputers,m
Formostofus,thepurposeoftheholidaysistobringpeace,love,andgoodwilltowardsall.Yet,formany,theholidayseason
最新回复
(
0
)