首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
admin
2016-09-13
53
问题
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为Y-y=yˊ(x)(X-x),它与x轴的交点为N(x-[*],0).由于yˊ(x)>0,y(0)=1,从而y(x)>0,于是 [*] 又S
2
=∫
0
x
y(t)dt,由条件2S
1
-S
2
=1,知 [*]-∫
0
x
y(t)dt=1. ① 两边对x求导得[*]-y=0,即yyˊˊ=(yˊ)
2
.令p=yˊ,则上述方程可化为 [*] 解得p=C
1
y,且[*]=C
1
y.于是y=[*] 注意到y(0)=1,并由①式得yˊ(0)=1.由此可得C
1
=1,C
2
=0,故所求曲线的方程是y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/qPT4777K
0
考研数学三
相关试题推荐
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
利用格林公式,计算下列第二类曲线积分:
判别级数的敛散性.
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
自由落体位移与时间的关系设有一质量为m的物体,在空中由静止开始下落,如果空气的阻力为R=c2v2(其中c为常数,v为物体运动的速率),试求物体下落的距离s与时间t的函数关系.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
设线性方程组x1+x2+x3=0;x1+2x2+ax3=0;x1+4x2+a2x3=0;与方程x1+2x2+x3=a-1;有公共解,求a的值及所有公共解.
求解y"=e2y+ey,且y(0)=0,y’(0)=2.
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
姑息治疗的首要目的是
男,50岁。乏力,腹胀伴尿黄1月余,15年前检查HBsAg(+),肝功能反复异常,但未诊治。既往有食管胃底静脉曲张破裂出血史。查体:皮肤巩膜重度黄染,肝掌及蜘蛛痣(+),腹水征(+)。实验室检查:ALT250U/L,TBil320μmol/L,HBsAg(
下列关于单代号网络图表述正确的是()。[2013年真题]
为使产品更具有市场竞争力,企业必须在确保产品的“使用功能”的同时,增加产品的( )。
某建设工程施工项目招标文件要求中标人提交履约担保,中标人拒绝提交,则应()。【2011年考试真题】
期货市场的发展历史证明,与电子化交易相比,公开喊价的交易方式具备的明显优点有( )。
在常见的算法交易策略中,()是根据特定的时间间隔,在每个时间点上平均下单的算法。其旨在使市场影响最小化的同时提供一个平均执行价格。
陶行知先生的“捧着一颗心来,不带半根草去”的教育信条体现了教师崇高的道德修养。()
购物:超市:商场
元朝军队按照种族差异和征发地区的不同,分为四种,对此论述正确的一项是()。①蒙古军②探马赤军③汉军④南军⑤新附军
最新回复
(
0
)