首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵β的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵β的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2017-01-14
48
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵β的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
, 即α
1
是矩阵β的属于特征值-2的特征向量。 由关系式B=A
5
-4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的三个特征值为μ
1
=-2,μ
2
=1,μ
3
=1。 设α
1
,α
2
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即[*]。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为 [*] B的全部特征向量为k
1
[*],其中k
1
≠0,k
2
,k
3
不同时为零。 (Ⅱ)令P=(α
1
,α
2
,α
3
)=[*],于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qWu4777K
0
考研数学一
相关试题推荐
[*]
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
设g(x)在点x=0连续,求f(x)=g(x)•sin2x在点x=0的导数.
设A是m×n矩阵,B是,n×m矩阵,则
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
在区间(0,1)中随机地取两个数,则两数之差的绝对值小于1/2的概率为___________.
设矩阵且|A|=﹣1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(﹣1,﹣1,1)T,求a,b,c及λo的值.
函数f(x)=展开成x的幂级数为___________.
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
随机试题
女性患者,50岁,心悸,心电图示房颤,胸片及PDE检查未见心脏结构异常,查体可见
男性,33岁,无过敏反应史,但有主动脉瓣关闭不全,准备进行牙齿的职业性清洁女性,58岁,由于二尖瓣脱垂而造成二尖瓣反流杂音,因血尿将进行膀胱镜检查。
A.瑞舒伐他汀B.阿托伐他汀C.吉非罗齐D.非诺贝特E.氟伐他汀含有3,5-二羟基羧酸活性结构和嘧啶环骨架的HMG-CoA还原酶抑制剂调血脂药物是()。
城乡规划编制单位取得资质证书后,不再符合相应资质条件的,由原发证机关责令()
下列属于胶凝材料的是()。
每年科学家都统计在主要繁殖地聚集的金蟾蜍的数量。在过去十年中,每年聚集在那里的金蟾蜍的数量从1500只下降到200只。显然,在过去的十年中,金蟾蜍的数量在急剧下降。以下哪项如果为真,能使上文中的结论适当地得出?
打开VisualFoxPro的“项目管理器”的“文档”选项卡,其中包含______。
在考生文件夹下,打开文档WORDl.docx,按照要求完成下列操作并以该文件名(WORD1.docx)保存文档。【文档开始】为什么成年男女的声调不一样?大家都知道,女人的声调一般比男人的“尖高”。可是,为什么会这样呢?人的解剖结构告诉我们,男人和女人的
Shortsharptermsmakebigpointsclear.Butpeopleoftenprefertosoftentheirspeechwitheuphemism:amixtureofabstraction
Peopleinsunny,outdoorsystates—Louisiana,Hawaii,Florida—saytheyarethehappiestAmericans,andresearchersthinktheykno
最新回复
(
0
)