首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
admin
2019-12-24
81
问题
讨论线性方程组
的解的情况,在线性方程组有无穷多解时,求其通解。
选项
答案
系数矩阵为[*],增广矩阵为 [*] 从而|A|=(a+3)(a-1)
3
。 当a≠-3且a≠1时,方程组有唯一解; 当a=1时,r(A)=r(A,b)=1,方程组有无穷多解,对增广矩阵作初等行变换 [*] 从而所对应的齐次方程组的基础解系为 ξ
1
=(-1,1,0,0)
T
,ξ
2
=(-1,0,1,0)
T
,ξ
3
=(-1,0,0,1)
T
,特解为η
*
=(1,0,0,0)
T
,则方程组的通解为 x=η
*
+k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
,k
1
,k
2
,k
3
为任意常数。 当a=-3时,r(A)=r(A,b)=3,方程组有无穷多解,对增广矩阵作初等行变换 [*] 从而所对应的齐次方程组的基础解系为ξ=(1,1,1,1)
T
,特解为η
*
=(-2,-1,-4,0)
T
,则方程组的通解为x=η
*
+kξ,k为任意常数。
解析
本题考查线性方程组解的情况以及通解的求法。方程组有唯一解的充要条件是系数矩阵行列式不为0,方程组有无穷多解的充要条件是系数矩阵与增广矩阵有相同的秩,且都小于未知数个数。
转载请注明原文地址:https://kaotiyun.com/show/qmD4777K
0
考研数学三
相关试题推荐
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0x<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(I)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
已知随机变量X~N(0,1),求:(I)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数ψ(x)表示)
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
随机试题
甲是美国驻中国大使馆的大使,享有外交特权和豁免权。在这种情况下,应当由哪个机关移交外交部通过外交途径解决甲的刑事责任问题?
下列属于行政组织外部环境中最基本的方面,且是行政组织赖以生存和发展最深层环境的是()
蓝牙的最大传输距离是()
白细胞管型的存在可作为哪种疾病诊断的依据
患儿,女,生后7天,以“新生儿黄疸”收入院并行蓝光照射治疗。光疗时,护士应特别注意的是()。
一般规定,交易所会员在至少保留( )个席位的前提下允许转让席位。
计算题:根据所给材料计算后回答问题。(须列出算式;计算过程中的小数均保留实际位数,最后计算结果有小数的,小数保留2位。)某图书开本为1000毫米×1400毫米,1/32。该书有正文198面,主书名页2面,前言2面,目录3面,后记1面,均用定量为8
有关研究表明,教育对当代国民收入增长的贡献率显著提高。这说明教育具有()
古代玉器与中华文明的起源和发展息息相关,它不仅是社会地位的象征。还与中国传统的道德标准有着密不可分的关系。以孔子为创始人的儒家学派,继承并发扬了西周以来“比德于玉”的思想,赋予玉许多美德,将玉道德化,影响了一代又一代中国人。现今凡在字典上能找到的带“玉”字
认知风格
最新回复
(
0
)