首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
admin
2018-11-20
41
问题
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
选项
答案
记s=n—r(A),则本题要说明两点.(1)存在AX=β的s+1个线性无关的解.(2)AX=β的s+2个解一定线性相关. (1)设ξ为(I)的一个解,η
1
,η
2
,…,η
s
为导出组的基础解系,则ξ不能用η
1
,η
2
,…,η
s
线性表示,因此ξ,η
1
,η
2
,…,η
s
线性无关.ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(I)的s+1个解,并且它们等价于ξ,η
1
,η
2
,…,η
s
.于是 r(ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
)=r(ξ,η
1
,η
2
,…,η
s
)=s+1,因此ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(I)的s+1个线性无关的解. (2)AX=β的任何s+2个解都可用ξ,η
1
,η
2
,…,η
s
这s+1向量线性表示,因此一定线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/s5W4777K
0
考研数学三
相关试题推荐
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(y≤1)=,则P{min(X,Y)≤1)=().
设α1,…,αn为n个m维向量,且m<n,证明:α1,…,αn线性相关.
设A,B为n阶矩阵,证明:当P可逆时,Q也可逆.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
就k的不同取值情况,确定方程x3一3x+k=0根的个数.
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=________。
随机试题
关系中每一个属性都有一个取值范围,称为属性的________。
一住店客人未付房钱即要离开旅馆去车站,旅馆服务员见状揪住他不让走,并打报警电话。客人说:“你不让我走还限制我自由,我要告你们旅馆,耽误了乘火车要你们赔偿。”旅馆这样做的性质应如何认定?
()属于后生动物。
在对标书详细评审中,技术评审的主要内容包括投标书的技术方案、技术措施、组织机构、进度及()等进行分析评价。
某企业以8%的年利率借得100000元,投资于某个寿命为5年的项目上,为使该项目有利可图,每年至少应收回的现金数额为()元。
剧烈运动时血浆的pH值()。
读某“科学园区开发成功的区位因素表”和“技术城结构示意图”,分析回答下列问题。该科学园为新兴工业区。据表说明该类工业区的交通运输特点。
全国法院坚持问题导向,梳理原因,对症施策,精准执行,形成了一个“党委领导、人大监督、政府支持、政法委协调、法院主办、部门配合、社会各界参与”的执行工作大格局,______________了一套完善的执行工作体制机制,______________了一批完备的
已知α1=(1,0,0)T,α2=(1,2,-1)T,α3=(-1,1,0)T,且Aα1=(2,1)T,Aα2=(-1,1)T,Aα3=(3,-4)T,则A=_______.
A、Itwasmadebyawell-knownartist.B、Itishand-painted.C、Itisfromanothercountry.D、Itisrare.B细节题。女士想要买那个瓷盘(potteryp
最新回复
(
0
)