首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
admin
2021-11-09
56
问题
设矩阵
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
选项
答案
矩阵A的特征多项式为 [*] 如果λ=2是单根,则λ
2
—8λ+18+3a是完全平方,必有18+3a=16,即[*]。 则矩阵A的特征值是2,4,4,而r(4E一A)=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化。如果λ=2是二重特征值,则将λ=2代人λ
2
一8λ+18+3a=0可得a=一2。于是λ
2
一8λ+18+3a=(λ一2)(λ一6)。则矩阵A的特征值是2,2,6,而r(2E一A)=1,故λ=2有两个线性无关的特征向量,从而A可以相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/qqy4777K
0
考研数学二
相关试题推荐
设f(x)满足f(x)=f(x+2),f(0)=0,又在(-1,1)内f’(x)=|x|,则=_______.
=_x005f________.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
四阶行列式的值等于()
下列说法正确的是().
已知2n阶行列式D的某一列元素及其余子式都等于a,则D等于().
一根长为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=一x2+2x+1,则该细棒的质心坐标=________.
随机试题
目前世界上存在的广播电视体制类型。
企业财务战略
危机管理的阶段划分主要包括()
气虚是临床常见虚劳的一类,其中以哪类脏腑气虚为多见
关于结核性脑膜炎的描述错误的是
某公司普通股股票每股面值为1元,每股市价为3元,每股收益为0.2元,每股股利为0.15元,该公司无优先股,则该公司市盈率为()。
在公共场合演讲,有的人长篇大论,滔滔不绝;有的人则把自己的意思浓缩成一句话,而这句话犹如一粒沉甸甸的石子,在听众平静的心湖里激起层层波浪,让人称道与回味。1936年10月19日,在上海各界人士公祭鲁迅先生的大会上,著名新闻记者、政治家、社会活动家邹韬奋先生
古罗马历史著作《日耳曼尼亚志》的作者是()。
生成派生类对象时,派生类构造函数调用基类构造函数的条件是()。
美国的传统节日,有不少是我这个东方人从未经历过,甚至闻所未闻的。 刚到美国,我去一所成人学校读英语。一脚跨进教室,就见一位碧眼女郎飞步迎来,献上一张心形卡片,上面赫然写着:“我喜欢你!”我不禁愕然。纵然“一见钟情”,也没有如此神速的!岂料又有一位金
最新回复
(
0
)