首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程 [(A)*]一1BA一1=2AB+4E,且A*α=α,其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程 [(A)*]一1BA一1=2AB+4E,且A*α=α,其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
admin
2018-04-18
107
问题
已知三元二次型X
T
AX经正交变换化为2y
1
2
一y
2
2
一y
3
2
,又知矩阵B满足矩阵方程
[(
A)
*
]
一1
BA
一1
=2AB+4E,且A
*
α=α,其中α=[1,1,一1]
T
,A
*
为A的伴随矩阵,求二次型X
T
BX的表达式.
选项
答案
由条件知A的特征值为2,一1,一1,则|A|=2,因为A
*
的特征值为[*],所以A
*
的特征值为1,一2,一2,由已知,α是A
*
关于λ=1的特征向量,也就是α是A关于λ=2的特征向量. 由[*]得2ABA
一1
=2AB+4E,即B=2(E一A)
一1
,则B的特征值为一2,1,1,且Bα=一2α.设B关于λ=1的特征向量为β=[x
1
,x
2
,x
3
]
T
,又B是实对称阵,α与β正交,故x
1
+x
2
一x
3
=0,解出β
1
=[1,一1,0]
T
,β
2
=[1,0,1]
T
,令 [*] 故X
T
BX=一2x
1
x
2
+2x
1
x
3
+2x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/qtk4777K
0
考研数学二
相关试题推荐
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
A、 B、 C、 D、 D
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
某商品的销售量x是价格P的函数,如果欲使该商品的销售收入在价格变化情况下保持不变,则销售量x对于价格P的函数关系满足什么微分方程?在这种情况下该商品需求量相对价格P的弹性是多少?
(Ⅰ)证明积分中值定理:设f(x)在[a,b]上连续,则存在ξ∈[a,b],使∫abf(x)dx=f(ξ)(b-a);(Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,证明至少存在一点ξ∈(1,3),使得φ’’(ζ)
求极限
(2011年试题,三)已知函数F(x)=试求a的取值范围.
随机试题
高尔基的自传体三部曲是
FIM评定中依赖是指FIM评定中完全依赖是指
缺铁性贫血红细胞直方图特点是
如果投资方案在经济上可行,则有财务净现值______。
国境卫生检疫机关依据检疫医师提供的检疫结果,对有艾滋病病毒感染者的入境交通工具,不签发入境检疫证。
下图为某时某区域海平面等压线分布示意图。下列对各地天气状况的描述,正确的是()。
简述概念掌握的主要方式及幼儿概念掌握的特点。
阅读下面材料,回答问题。中国人民银行8月11日公布的数据显示,2009年1~7人民币各项贷款增加7.73万亿元,同比多增4.89万亿元。2009年7月末,广义货币供应量(M2)余额为57.30万亿元,同比增长28.42%,增幅比上年末高10.6个百分点
给定程序MODll.C是建立一个带头结点的单向链表,并用随机函数为各结点赋值。函数fun的功能是将单向链表结点(不包括头结点)数据域为偶数的值累加起来,并且作为函数值返回。请改正函数fun中指定部位的错误,使它能得出正确能结果。注意:不
Washington:TheBushadministrationhas【L1】______forthefirsttimethatitmaybewillingto【L2】______amultinationalforcein
最新回复
(
0
)