首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足f(x)dx=0,xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足f(x)dx=0,xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
admin
2019-07-19
24
问题
设f(x)在[0,1]上连续,且满足
f(x)dx=0,
xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
选项
答案
令F(x)=[*]f(t)dt,G(x)=[*]F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=[*]sf(s)ds=0-0=0. 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G′(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知,[*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F′(ξ
1
)=f(ξ
1
)=0,F′(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=
f(t)dt在[0,1] 区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/r8c4777K
0
考研数学一
相关试题推荐
设有微分方程y’—2y=φ(x),其中φ(x)=,在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:使用的最初150小时内,至少有两个电子管被烧坏的概率;
已知随机变量X的概率密度(Ⅰ)求分布函数F(x).(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
设两总体X,Y相互独立,X~N(μ1,60),Y~N(μ2,36),从X,Y中分别抽取容量为n1=75,n2=50的样本,且算得=82,=76,求μ1-μ2的95%的置信区间.
极限
设(X,Y)服从右图矩形区域D上的均匀分布则P{X<Y,Y>}=______.[img][/img]
一个计算机硬件公司生产一种型号的微型芯片,每一芯片有0.1%的概率为次品,且各芯片是否成为次品是相互独立的.求1000块芯片中至少有两块是次品的概率,分别用二项分布和泊松分布近似来计算.
随机试题
金元以前哮与喘混称,明以后首先提出哮与喘当为二个不同病证的医著是()
建设工程进度控制的主要环节是()。
( )是沥青混凝土路面施工中常见质量控制的关键点。
1.背景材料:某桥主跨为40×50m预应力混凝土简支T梁桥,主墩基础为直径2.0m的钻孔灌注桩,桥址处地质为软岩层,设计深度为20m,采用回转钻进施工法钻孔。根据有关检验标准,施工单位制定了钻孔灌注桩的主要检验内容和实测项目如下:(1)
刑事责任包括()。
只要通过微信平台,就能查询商品价格,动动手指,即能完成转账购买……如今,“指尖上的银行“正改变着人们的生活。这表明()。
为了创建企业文化,某单位计划购进一批图书分发到下属的4个部门,分发的图书数量与部门人数成正比。已知4个部门的人数分别为15人、20人、50人和75人,若总共下发的图书为1600本,则下发图书量最大的部门比下发图书量最小的部门多得了()本书。
许多从事______地球外文明的科学家认为,波长为21厘米的电波在宇宙空间极为普通,如果地球外文明要向其他星体发出讯号,就很有可能会使用这个波长。两位科学家获得了十分庞大的观察资料,经过______,获得了37个讯号,其中有5个讯号特别强烈。填入横
Withtheeffortsofallthemembers,theteam____________(获得第一名)inthematch.
【C1】【C15】
最新回复
(
0
)