首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足f(x)dx=0,xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足f(x)dx=0,xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
admin
2019-07-19
35
问题
设f(x)在[0,1]上连续,且满足
f(x)dx=0,
xf(x)dx=0,求证:f(x)在(0, 1)内至少存在两个零点.
选项
答案
令F(x)=[*]f(t)dt,G(x)=[*]F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=[*]sf(s)ds=0-0=0. 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G′(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知,[*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F′(ξ
1
)=f(ξ
1
)=0,F′(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=
f(t)dt在[0,1] 区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/r8c4777K
0
考研数学一
相关试题推荐
设函数f’(x)在[a,b]上连续,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设二元函数z=z(x,y)是由方程xexy+yz2=yzsinx+z所确定,求二阶偏导数
证明:.
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是
将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
级数π().
级数的和等于()
设从均值为μ,方差为σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,是μ的无偏估计量,并确定常数a,b的值,使得方差DT达到最小.
证明二重极限不存在。
(Ⅰ)设f(x1,x2,x3)一x12+2x22+6x32一2x1x2+2x1x3—6x2x3,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;(Ⅱ)设求可逆矩阵D,使A=DTD.
随机试题
A、Hemissedhisplane.B、Thetaxidriveroverslept.C、Heheardaterribleaccidentreportedovertheradio.D、Hewouldhavebeen
A.附子B.干姜C.两者均用D.两者均不用治疗阳虚水肿,常选用()
患者,女,50岁。因患尿毒症而入院,患者精神萎靡,食欲差,24小时尿量80ml,下腹部空虚,无腹痛。患者目前的排尿状况是
A.抑制细菌细胞壁合成B.抑制细菌蛋白质合成C.抑制细菌DNA依赖的RNA多聚酶D.抑制细菌二氢叶酸还原酶E.抑制细菌DNA合成β-内酰胺类()
原发性痛经的病因不属于继发性痛经分类的选项是
不按期申报、领取房屋租赁证的,由()责令限期补办手续,并可处以罚款。
银行工作人员制作虚假的委托收款凭证交付他人属于()。
发挥人的主观能动性的基本途径是()
A、Thebossisoftenlateforwork.B、Thebosswillprobablydisciplinethewoman.C、Thebossmaydisregardthewoman’slateness.
HowtoUseaLibraryA)You’redrivingyourcarhomefromworkorschool.Andsomethinggoeswrong.Theenginestallsoutatligh
最新回复
(
0
)