首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,∫01f(x)dx=∫01x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
设f(x)在[0,1]上可导,∫01f(x)dx=∫01x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
admin
2019-01-23
28
问题
设f(x)在[0,1]上可导,∫
0
1
f(x)dx=∫
0
1
x f(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
选项
答案
作辅助函数F(x)=∫
0
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,又0=∫xf(x)dx=∫
0
1
xdF(x)=xF(x)|
0
1
—∫
0
1
F(x)dx=0,由积分中值定理, 存在点η∈(0,1),使得F(η)=0.于是,在[0,η]和[η,1]上分别对F(x)应用洛尔定理,存在点ξ
1
∈(0,η),ξ
2
∈(η,1),使得f(ξ
1
)=f(ξ
2
)=0. 在[ξ
1
,ξ
2
]上对f(x)再应用洛尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得f’(ξ)=0.
解析
证明存在点ξ,使得f’(ξ)=0,可对f(x)用一次洛尔定理,也可对f(x)的原函数∫
a
x
f(t)dt用两次洛尔定理.
转载请注明原文地址:https://kaotiyun.com/show/lrM4777K
0
考研数学一
相关试题推荐
设an>0,bn>0,(n=1,2,…),且满足试证:(Ⅰ)若级数收敛,则收敛;(Ⅱ)若级数发散,则发散.
设级数的部分和,则=______.
设A是n阶可逆矩阵,λ是A的特征值,则(A*)2+E必有特征值______.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)=0,fn(x)≠0.
设二维随机变量(X,Y)在区域D={(X,Y)|0≤y≤1,Y≤x≤Y+l}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a.b.c.
求[φ(x)-1]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(1)存在点η∈使得f(η)=η.(2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
随机试题
简述对外贸易量与对外贸易额的关系。
账户按照经济内容分类,下列账户中属于由利润转化形成的所有者权益类账户的有()
最轻的意识障碍是
引起哮喘不可逆性气道阻塞的原因是
神经嵴不能衍化的细胞是()
老年人使用下列药物时对吸收几乎没有影响的是
对于膨胀岩土的岩土工程评价的要求,正确的是()。
全陪导游人员、地陪导游人员、旅游团领队构成的导游服务集体协作共事、建立良好合作关系的原则基础是()
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
Whena13-year-oldVirginiagirlstartedsneezing,herparentsthought’itwasmerelyacold.Butwhenthesneezescontinuedfor
最新回复
(
0
)