首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等行变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等行变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2017-12-12
31
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等行变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=α
4
与χ
1
β
1
+χ
2
β
2
+χ
3
β
3
=β
4
是同解方程组,因为方程组χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=α
4
有唯一解,所以方程组χ
1
β
1
+χ
2
β
2
+χ
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选C.
转载请注明原文地址:https://kaotiyun.com/show/r9k4777K
0
考研数学二
相关试题推荐
1/3
[*]
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
下列给出的各对函数是不是相同的函数?
求下列各函数的导数(其中f可导):
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设fˊ(x)在[a,b]上连续,且fˊ(a)>0,fˊ(b)<0,则下列结论中错误的是().
(2000年)设函数f(χ),g(χ)是大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时有【】
造一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
随机试题
具有行气导滞、攻积泄热功用的方剂是
下列选项中,不属于听证范围的是( )。
下列关于城市水源的说法,有错误的是()。
投资者对外商投资创业投资企业的出资中,外国投资者所占比例不得低于()。
积极型股票投资战略中的市场异常策略包括( )。
管理型物业服务企业的工作重点在于()
下列各句中加下划线的成语使用恰当的一项是()。
当今世界,克隆技术发展很快。英、美科技界一些人士提出“克隆”人的主张,遭到联合国在内的各国反对,因为这样做会违背()。
若有SQL语句:Select月底薪+提成-扣除As月收入From工资表;其中,子句"AS月收入"的作用是
Anotherthinganastronauthastolearnaboutiseatinginspace.Foodisweightless,justasmenare.Foodforspacehasto
最新回复
(
0
)