首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x0,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x0,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).
admin
2016-10-24
11
问题
设f(x)在[a,b]上连续,且f"(x)>0,对任意的x
0
,x
2
∈[a,b]及0<λ<1,证明:f[λx
1
+(1一λ)x
2
]≤λf(x
1
)+(1一λ)f(x
2
).
选项
答案
令x
0
=λx
1
+(1一λ)x
2
,则x
0
∈[a,b],由泰勒公式得 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x—x
0
)
2
,其中ξ介于x
0
与x之间,因为f"(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x一x
0
), 于是 [*] 两式相加,得f[λx
1
+(1一λ)x
2
]≤λf(x
1
)+(1一λ)f(x
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/rIH4777K
0
考研数学三
相关试题推荐
利用函数的幂级数展开式求近似值:(1)e(精确到10-3);(2)cos2°精确10-4;(3)(精确到10-3).
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
若曲线y=x3+ax2+bx+1有拐点(-1,0),则b=__________.
设某产品的成本函数为C=Aq2+bq+c,需求函数为其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b,求:(I)利润最大时的产量及最大利润;(Ⅱ)需求对价格的弹性;(Ⅲ)需求对价格弹性的绝对值为1时的产量.
设X2,X3,…,Xn(n≥2)为来自总体N(0,1)的简单随机样本,X为样本均值,S2为样本方差,则().
设z=(x2+y2)earctan(y/x),求dz与
随机试题
通常把多少T的MRI诊断仪称为高场机器
不属于亲水性有机溶剂的是
在下列情形中,注册机关依据职权或根据利害关系人的请求,可以撤销注册建造师注册的有()。
银行代收代付业务分为()。
根据我国专利法的规定,发明专利权的保护期限和起算时间是()。
根据《中华人民共和国民事诉讼法》的规定,人民法院审理案件,原告经传票传唤,无正当理由拒不到庭的,可以()。
拉丁帝国
在证券投资中,在投资组合中随机加入足够多的证券,可以分散()。
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
以下控件中,能显示滚动条的是
最新回复
(
0
)