首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
admin
2019-12-26
57
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
为方程组(I)的基础解系,所以该向量 组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n-n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为 y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中k
1
,k
2
,…,k
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/rJD4777K
0
考研数学三
相关试题推荐
设A=,其中ai≠0,i=1,2,…,n,则A-1=________.
差分方程y一2y,一3×2t的通解为y(t)=________.
设f(ln)x=,则∫f(x)dx=______.
设A=E+αβT,其中α,β均为n维列向量,αTβ=3,则|A+2E|=_________.
设二维随机变量(X,Y)的分布列为(如下).其中α,β未知,但已知EY=,则α=_______,β=_______,EX=_______,E(XY)=_______.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为________.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xi,Z=求:ρXZ.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=证明:F(x)在(a,+∞)内单调增加.
设f(χ)有连续一阶导数,试求=_______.
设函数f(x)在(0,+∞)上连续,且对任意正值a与b,积分∫aabf(x)dx的值与a无关,且f(1)=1.则f(x)=______.
随机试题
女性患者,50岁,心悸,心电图示房颤,胸片及PDE检查未见心脏结构异常,查体可见
男性,33岁,无过敏反应史,但有主动脉瓣关闭不全,准备进行牙齿的职业性清洁女性,58岁,由于二尖瓣脱垂而造成二尖瓣反流杂音,因血尿将进行膀胱镜检查。
A.瑞舒伐他汀B.阿托伐他汀C.吉非罗齐D.非诺贝特E.氟伐他汀含有3,5-二羟基羧酸活性结构和嘧啶环骨架的HMG-CoA还原酶抑制剂调血脂药物是()。
城乡规划编制单位取得资质证书后,不再符合相应资质条件的,由原发证机关责令()
下列属于胶凝材料的是()。
每年科学家都统计在主要繁殖地聚集的金蟾蜍的数量。在过去十年中,每年聚集在那里的金蟾蜍的数量从1500只下降到200只。显然,在过去的十年中,金蟾蜍的数量在急剧下降。以下哪项如果为真,能使上文中的结论适当地得出?
打开VisualFoxPro的“项目管理器”的“文档”选项卡,其中包含______。
在考生文件夹下,打开文档WORDl.docx,按照要求完成下列操作并以该文件名(WORD1.docx)保存文档。【文档开始】为什么成年男女的声调不一样?大家都知道,女人的声调一般比男人的“尖高”。可是,为什么会这样呢?人的解剖结构告诉我们,男人和女人的
Shortsharptermsmakebigpointsclear.Butpeopleoftenprefertosoftentheirspeechwitheuphemism:amixtureofabstraction
Peopleinsunny,outdoorsystates—Louisiana,Hawaii,Florida—saytheyarethehappiestAmericans,andresearchersthinktheykno
最新回复
(
0
)