首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
admin
2019-12-26
87
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
为方程组(I)的基础解系,所以该向量 组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n-n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为 y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中k
1
,k
2
,…,k
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/rJD4777K
0
考研数学三
相关试题推荐
设n是正整数,则=________.
设f(ln)x=,则∫f(x)dx=______.
设函数z=z(x,y)由方程sinx+2y-z=ez所确定,则=________.
求方程组的通解.
求微分方程的通解.
设A是m×n阶矩阵,若ATA=0,证明:A=0.
求的反函数的导数.
计算二重积分,其中D是由曲线,直线y=x及x轴所围成的闭区域。
设α=[1,0,1]T,A=ααT,n是正数,则|aE一An|=________.
设矩阵A=(aij)3×3,满足A*=A*,其中AT为A的伴随矩阵,AT为A的转置矩阵.若a11a12,a13为三个相等的正数,则a11为().
随机试题
慢性消耗性疾病时,下列哪些细胞可出现脂褐素
黄色泡沫样脓性白带常见于
阳黄患者,经治黄疸消退后,症见脘腹作胀,胁肋臆痛,不思饮食,肢体困倦,大便时秘时溏,舌苔薄白,脉弦细。治疗宜用
新药监测期内的药品应报告该药品发生的
平整度测试方法有()。
下列说法正确的是()。
下列句子中,有语病的一项是()。
下列关于“三农”问题表述有错误的一项是()。
下列国际单位制中对应关系错误的是()。
自我实现预期:当人们对后果有期望或期待时,就会引发某种行为,预期可以通过自我暗示或他人暗示形成自我激励或他人激励,对激发与调动潜在的能力起到一定的作用。积极的预期会产生积极的结果,消极的预期则产生消极的结果。下列现象不属于“自我实现预期”的是()。
最新回复
(
0
)