首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,试写出线性方程组 的通解,并说明理由.
admin
2019-12-26
56
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
为方程组(I)的基础解系,所以该向量 组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n-n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为 y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中k
1
,k
2
,…,k
n
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/rJD4777K
0
考研数学三
相关试题推荐
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx=________.
设函数f(χ)连续,且f(0)≠0,求极限=_______.
设函数f(x)在x=1连续,且f(1)=1,则
设A=E+αβT,其中α,β均为n维列向量,αTβ=3,则|A+2E|=_________.
设(2,1,5,2,1,3,1)是来自总体X的简单随机样本值,则总体X的经验分布函数Fn(x)=______.答案
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
计算二重积分|x2+y2—1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
化为极坐标系中的累次积分为()
设求它的反函数x=φ(y)的二阶导数及φ"(1).
设f′(sin2x)=cos2x+tan2x,求f(x)(0<x<1).
随机试题
张某2021年全年获得劳务报酬收入两次,分别为2000元,5000元。刘某两次劳务报酬所得应预扣预缴个人所得税为()元。
A.指压式B.执笔式C.全握式D.反挑式E.横握式切开范围广、用力较大的切开方式是
我国开展食盐氟化防龋的城市是
A.桑菊饮B.百合固金汤C.桑杏汤D.清金化痰汤E.银翘散某女,40岁,干咳少痰,痰中带血,午后咳甚,五心烦热,潮热盗汗。舌红少苔,脉细数。辨证为肺肾阴虚,治宜选用的方剂是()。
完全退火的目的是()。
根据《建设工程安全生产管理条例》,施工单位的()应当经建设行政主管部门或者其他有关部门考核合格后方可任职。
近年来,人大代表在百姓心中的分量越来越重。每年一次的人民代表大会,老百姓都能触摸到代表履职的“脉搏”,心系人民群众,热议国计民生,力推重要问题解决。这说明()。
前摄抑制是指先学习的材料对识记和回忆后学习的材料所产生的干扰作用:倒摄抑制是指后学习的材料对识记和回忆先学习的材料所产生的干扰作用。根据上述定义。以下哪项只包含倒摄抑制?
不经过频谱搬移直接使用原二进制电信号所固有的频率进行信号发送的数据传输形式被称为______。
A、Anengineroom.B、Abigkitchen.C、Agreattheatre.D、Ahighbuilding.C短文提到:“这种大型喷气式飞机的内部看上去更像一个大剧院。”故C正确。
最新回复
(
0
)