首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 求A;
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中 求A;
admin
2021-07-27
34
问题
设A,B,C均是3阶矩阵,满足AB=2B,CA
T
=2C其中
求A;
选项
答案
由题设条件: ①AB=-2B,将B按列分块,设B=[β
1
,β
2
,β
3
],则有A[β
1
,β
2
,β
3
]=-2[β
1
,β
2
,β
3
],即Aβ
i
=-2β
i
,i=1,2,3,故β
i
(i=1,2,3)是A的对应于λ=-2的特征向量.又因β
1
,β
2
线性无关,β
3
=β
1
+β
2
,故β
1
,β
2
是A的属于λ=-2的线性无关的特征向量; ②CA
T
=2C,两边转置得AC
T
=2C
T
,将C
T
按列分块,设C
T
=[α
1
,α
2
,α
3
],则有A[α
1
,α
2
,α
3
]=2[α
1
,α
2
,α
3
],Aα
i
=2α
i
,i=1,2,3,故α
i
(i=1,2,3)是A的属于λ=2的特征向量.因α
1
,α
2
,α
3
互成比例,故α
1
是A的属于特征值λ=2的线性无关的特征向量.取P=[β
1
,β
2
,α
1
],则P可逆,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rQy4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
求线性方程组的通解,并求满足条件x12=x22的所有解.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
理想的追求和实现是一个
变应性炎症属
不会导致组织水肿的因素是
以降逆化痰,益气和胃为主要功用的方剂是
某抗震等级为二级的钢筋混凝土结构框架柱,其纵向受力钢筋(HRB400)的直径为25mm,采用钢筋混凝土扩展基础,基础底面形状为正方形,基础中的插筋构造如图16—17(Z)所示,基础的混凝土强度等级为C30。试问,当锚固长度修正系数ξ取1.0时,柱纵向
某公司上年年末支付每股股息为2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为( )元。
某公司拟进行股票投资,计划购买A、B、C三种股票。已知A、B股票的β系数分别为1.5、1.0,C股票收益率与市场组合收益率的相关系数为0.8,C股票的标准差为12.5%。该公司建立的投资组合中A、B、C股票的投资比重分别为50%、30%和20%。同期市场
在游客观看景区节目时,讲解员应自始至终()。
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力以及文字表达能力的测试。2.仔细阅读给定资料,按照后面提出的“申论要求”。二、给定资料材料一:2008年6月28日,解放军第一医院收治了第一例因
《租借法案》
最新回复
(
0
)