首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是( )
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是( )
admin
2019-08-12
50
问题
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是( )
选项
A、f(0)>1,f"(0)>0.
B、f(0)>1,f"(0)<0.
C、f(0)<1,f"(0)>0.
D、f(0)<1,f"(0)<0.
答案
B
解析
因为函数f(x)具有二阶连续的导数,且在点(0,0)处取得极大值,所以(0,0)是z=f(x)lnf(y)的驻点.又
因此在(0,0)处,A=f"(0)lnf(0),B=0,C=f"(0).
由于函数z=f(x)lnf(y)在点(0,0)处取得极大值,故应有A<0,C<0,即f(0)>1,f"(0)<0,应选(B).
转载请注明原文地址:https://kaotiyun.com/show/FwN4777K
0
考研数学二
相关试题推荐
(10年)求函数的单调区间与极值.
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0.δ)(δ>0)内可导,且,则f+’(0)存在
(10年)函数y=In(1—2x)在x=0处的n阶导数y(n)(0)=________.
(09年)设y=y(x)是由方程xy+ey=x+1确定的隐函数,则
(98年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的
(2002年)已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若B=,求矩阵A.
(2007年)设矩阵A=,则A3的秩为________.
(2017年)设为3阶矩阵.P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1+α2+α3)=
(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵.且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
随机试题
最易导致肾气不固的情志因素是
女性,17岁。确诊暴发型流行性脑脊髓膜炎。应首选下列哪个药物治疗()
“海上三任”是活跃在上海画坛的_______、_______、_______。
在中学课程学科中,属于语言和文学这一学习领域的科目是()
军装:士兵
大学生在大学里要学习很多知识,小王是一名大学生,所以他学习了很多的知识。以下哪项论证展示的推理错误与上述论证中的最相似?()
采用一定方法逐步降低初始状态和目标状态的距离,以达到问题解决的方法是()
中国坚定不移地奉行独立自主的和平外交政策,我国对外政策的基本立足点是
(7)协议在终端设备与远程站点之间建立安全连接。
Oneday,apoorboywhowastryingtopayhiswaythroughschoolbysellinggoodsdoortodoorfoundthatheonlyhadonedimel
最新回复
(
0
)