首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2017-12-29
63
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)— f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)— f(a)=f’(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/rUX4777K
0
考研数学三
相关试题推荐
已知是f(x)的原函数,则∫xf’(x)dx=________.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
已知A,B是三阶方阵,A≠0,AB=0证明:B不可逆.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1一θ,p2=θ一θ2,p3=θ2一θ3,p4=θ3,记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n。确定a1,a2,a3,a4使
A是n阶方阵,则A相似于对角阵的充分必要条件是()
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a—t)dt。证明:F(ga)-2F(A)=f2(A)-f(0)f(2a).
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
证明:当x>0时,不等式<1+x成立.
随机试题
游客发生高原反应的症状有()。
被告人何某,男21岁。某日,深夜约11点钟,在某胡同拐角处,何某藏身阴暗处准备持刀抢劫。忽然看见一对谈恋爱的青年男女走过来,女子背着包,胡某即准备实施抢劫。当这对青年走近时,何某从旁边跳起,手持尖刀逼对方交出皮包。对方未作反抗,把皮包放在地上。何某让两被害
《备急千金要方》的作者是
目前临床上多巴胺用于
铁路隧道围岩的特性主要包括()。
某房地产开发公司(增值税一般纳税人)于2017年1月受让一宗土地使用权,依据受让合同支付政府部门地价款7000万元(已取得相关部门的财政票据),当月办妥土地使用证并支付相关税费。自2017年2月起至2018年2月末,该房地产开发公司在受让土地上开发建造一
将教育评价的结果作为决定升留级、分班编组、选择教程及指导职业定向的依据。这体现了教育评价的()。
Mothersinterferewiththeirchildren’slivesevenmorethanmostoffspringrealize.Thattheynagabouteatinghabitsiswellk
母亲不反对婚姻自由,但很注重爱情的专一。
"Learned"wordsarefromthemoreformativeconversationofhighlyeducatedspeakerswhoarediscussingsomeparticulartopics.
最新回复
(
0
)