首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2017-12-29
95
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)— f(a)一[*],易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)— f(a)=f’(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在[*],使得 [*] 又由于[*]f’(x)=A,对(*)式两边取x
0
→0
+
时的极限 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/rUX4777K
0
考研数学三
相关试题推荐
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
若DX=0.004,利用切比雪夫不等式估计概率P{|X—EX|<0.2}.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
求下列积分:
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
随机试题
A.清热化湿,调气和血B.清热解毒凉血C.温中燥湿,调气和血D.温中清肠调气休息痢的治法是
简述我国教育经费的主要来源。
预先控制又称为()
下列支气管疾病中,最常见并发咯血的是
急性腹膜炎在中医学中归属于
男,34岁。因反复干咳、咯血2月、发热1周来院门诊。查体:T39.2℃,消瘦,左上肺语颤增强、叩诊呈实音、呼吸音减弱。WBC7.8×109/L,PPD(1结素单位)强阳性,X线胸片示左上肺大片云雾状、密度较低、边缘模糊之阴影。最可能的诊断是
工商局郑某与个体户王某久有积怨,借执行公务之机,以王某销售伪劣商品为由扣押王某营业执照,将其货物查封,查封期间遇暴雨货物淋湿。王某不服,向工商局提出赔偿请求。工商局应作何处理?()
某检察院在对国家机关工作人员张某巨额财产来源不明案进行侦查时,发现其巨额财产三分之二为诈骗所得,三分之一为盗窃所得。关于此案,下列哪一选项是正确的?(2010年卷二27题,单选)
现行增值税法规定,销售额没有达到起征点的,不征增值税;超过起征点的,应就超过起征点的部分销售额依法计算缴纳增值税。()
设f(x)在[0,1]上二阶可导,且f”(x)<0.证明:f(x2)dx≤f().
最新回复
(
0
)